Ensuring readiness to evaluate innovative and emerging technologies is an important goal for the M-CERSI, focusing on new technologies that will contribute to the scientific underpinning of two device-related product areas: (1) laser-based therapeutic devices; and (2) tissue engineering constructs.
 
Regarding the first subproject above, there is a lack of reliable, widely-accepted benchtop techniques for characterizing and assessing the sub-surface laser therapeutic dosage. As a result, the potential for understanding the device- and tissue-dependent effects, as well as laser therapy system performance, are diminished. These complicate the regulatory process and increase the burden on manufacturers to provide clinical studies to demonstrate safety and effectiveness. This project will develop and validate novel test methods that will enable rapid and reliable evaluation of laser therapy system performance and advance the innovation and translation of light-based therapeutic techniques.
 
The second subproject involves the creation of polymeric scaffolds that function within guided tissue regeneration strategies. These need precise control over the formative processing steps and also detailed and standardized characterization of the resulting properties. Here, we are developing methods to evaluate scaffold properties across manufacturers and between product iterations. By undertaking these studies, we anticipate the basis for standardization of scaffold characterization, in general. University of Maryland faculty contributing to the research are Drs. Yu Chen and John Fisher.

Top