PACIFIC The School of Pharmacy

3D Printing Technologies for Oral Drug Delivery

Xiaoling Li, Ph.D. Professor, Thomas J Long School of Pharmacy, University of the Pacific Co-founder, CSO, Triastek

Disclaimer

The presenter is co-founder of Triastek and has financial interest in Triastek, Inc.

Principles of 3D Printing Technologies

Creating objects using Computer Aided Design (CAD)

Building objects with structures layer by layer based on CAD controlled by computer

- In situ polymerization (chemical reaction)
- Melt and solidification (temperature modulation)
 - Extrusion/jetting
 - High energy beam
- Binding of powder/sheets (adhesion)
 - Binding agents
- Extrusion/jetting (solvent evaporation)

Applications of 3D Printing in Biosciences

- Creation of organ models for surgical operation planning and treatment analysis
- Tissue engineering
 - Tissue scaffolds
 - Constructing tissues and organs
- Personalized repair/restructure of tissue, organ and body parts
 - Bone, tooth
 - Transplantation
 - Artificial limb/finger
- Pharmaceutical products
 - Drug delivery/Product development
 - Manufacturing
 - Personalized dosing

}} TRIASTEK

Application of 3D Printing Technologies in Pharmaceuticals

FDM 3D-Printed Dosage Forms Reported in Scientific Literatures

Oral Tablets

Immediate, prolonged, pulsatile, delayed release and combinations of differing kinetics

J Control Release, 269:355-363 Eur J Pharm Biopharm., 96:380-387 Int J Pharm, 476(1-2):88-92

Oral Capsules

Pulsatile release, delayed release

J Drug Deliv Sci Tec, 30:360-367 Int J Pharm, 544(1):21-30

Implantable Systems/Inserts

Prolonged release

J Pharm Sci, 105(9):2665-2676 Int J Pharm, 552(1-2):91-98

Dermal Patches

KIASTEK

Overcome skin barrier

199 needles of arrowon- waistline printed in 30 sec

Courtesy of Jin-Lab at Shanghai Jiao Tong University

6

Individualized Dosing

A Goyanes et al. IJP 567(2019)118497

Spritam-First FDA Approved 3D Printed Pharmaceutical Product

- Active ingredient: levetiracetam
- Indication: epilepsy
- Dose: 250, 500, 750, 1000 mg
- Disintegration time: Average 11 sec (2-27 seconds)
- Manufacturer: Aprecia Pharmaceuticals
- Approval date: Aug 3, 2015

W TRIASTEK

Structures of 3D Printed Oral Dosage Forms

International Journal of Pharmaceutics 631 (2023) 122480

MED® 3D Printing

Melt Extrusion Deposition (MED[®]) 3D printing is a technology that continuously converts powder feedstocks into softened/molten states followed by precise layer-by-layer deposition to produce objects with well-designed geometric structures

} TRIASTEK

Coordinate Multiple Materials to Fabricate Tablets with Internal Structures

MED[®] Developed Specifically for Pharmaceutical Applications

- Hardware **Software** Accuracy, precision, and reproducibility cGMP ٠ PAT • CM
 - Scalable, flexible, and fully automated

- Programmed drug release rate, mode, duration, and onset time
- Modulated PK profiles

K TRIASTEK

Unique Delivery System Design

Complex Tablet Architecture

- Sophisticated structures such as compartments with various geometric shapes can modulate the release rate, mode, duration, and onset time
- Incorporation of multiple APIs with multiple PK profiles can lead to greater outcome of drug therapy

3D printed tablets using sugar-based excipients

Internal Geometric Structure for Rate and Duration Control

K TRIASTEK

}} TRIASTEK

Achieving Challenging Release Profiles with Complex Internal Structures

Release rates can be controlled by the varying the area and thickness of each API layer

 $Q(t)\% = \frac{D_{(t)}}{D_{cond}} = \frac{R_D \int_0^t S(t) dt}{V} \times 100\%$

} TRIASTEK

Unique Structure and Programmed Release for Modulated PK Profiles

}} TRIASTEK

Lego Approach for Predictable or Fine-Tuning PK

Using "Lego Building" approach, theoretical PK profile can be predicted based on PK profiles of individual Lego units.

3D Printing Formulation by Design (3DFbD®)

A Paradigm Shift in Formulation Development

Instrumentations for Early-Phase Development and Commercial Scale Manufacturing

Commercial-Scale Production Line with Modular Design

}}} TRIASTEK

} TRIASTEK

MED 3D Printer and MED 3D Printing System

MED[®] 3D Printing

Concept of "by Design" Drives Drug Development and Manufacturing

3D Printed Pharmaceuticals and Candy-like Drug Products

No clear definition of a candy-like drug product exists.

3D Printing

Structural building

- Internal
- External

Controls

- Rate
- Mode
- Duration
- Onset
- abuse

Personalization/Low volume

Candy-like

Temptation

- Taste/odder
- External Appearance

Pleasure

Dependence

User/patient control

K TRIASTEK

}TRIASTEK

Stimulant/Non-stimulant Combination for ADHD using MED 3DP

Advantage: enhanced long-term effectiveness, higher tolerability and with less adverse effects

Plasma concentration vs time profile in human

24

3D Printing Technology for Pharmaceutical Applications

Drug Delivery for Specific In Vivo PK Profile

- Programmed release time
- Designed release rate
- Mixed release kinetics in one tablet
- Gastro retentive tablets
- Fast oral disintegrated tablets
- Combined multiple API with different release parameters

Clinical Testing Material Development

- Short and predictable development time
- Quick dose adjustment
- Flexible batch size

Challenging Formulations

- Poor water solubility
- Enhanced bioavailability
- Nanoparticle embedded tablets
- Overcoming polymorph crystal protection

Continuous manufacturing On Demand Manufacturing Personalized dosing Your imaginations..... **K** TRIASTEK

Sciences

Center

ŝŶ

-``

}} TRIASTEK

Acknowledgments

۳

Creating New Dimensions