



The SFI Research Centre for Pharmaceuticals















## **Overview**

Steven Ferguson, SSPC Manufacturing Theme Lead, School of Chemical and Bioprocess Engineering, UCD. steven.ferguson@ucd.ie

- Introduction: Co-processed APIs
- Direct Precipitation of ASDs in DS operations
- Integrated DS-DP Operation: Direct Isolation of Engineered Particles via Fluidized Bed Coating
- Integrated DS-DP Operation: Solidification of Ionic-liquid APIs



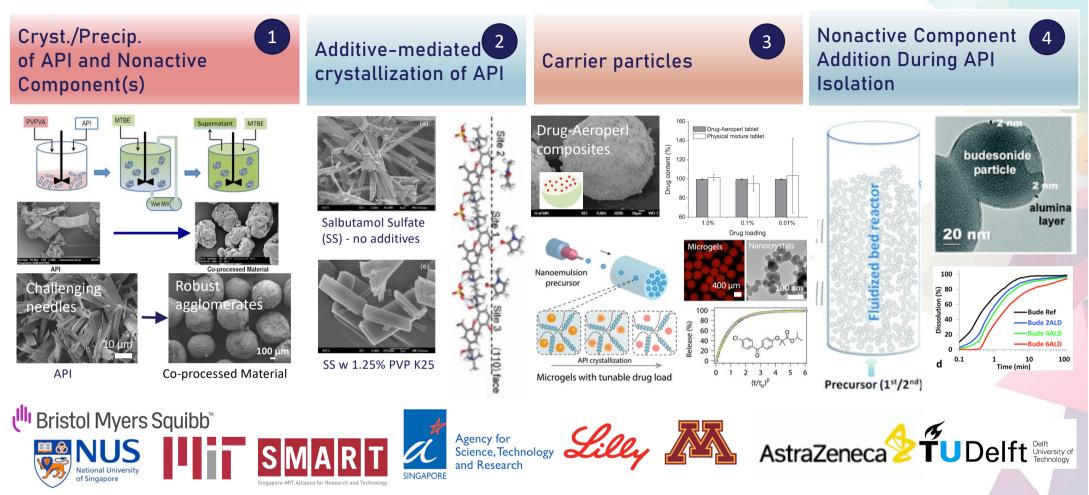
# **Proposed Terminology**

 Co-processed API: A drug substance, manufactured in a drug substance facility, that contains the API in addition to one or more non-covalently bonded, nonactive component, and differs from salts, solvates and/or cocrystals

Differing from salts, solvates, and cocrystals since API and nonactive component(s) do not exist in the same crystal lattice and do not always require a defined stoichiometry

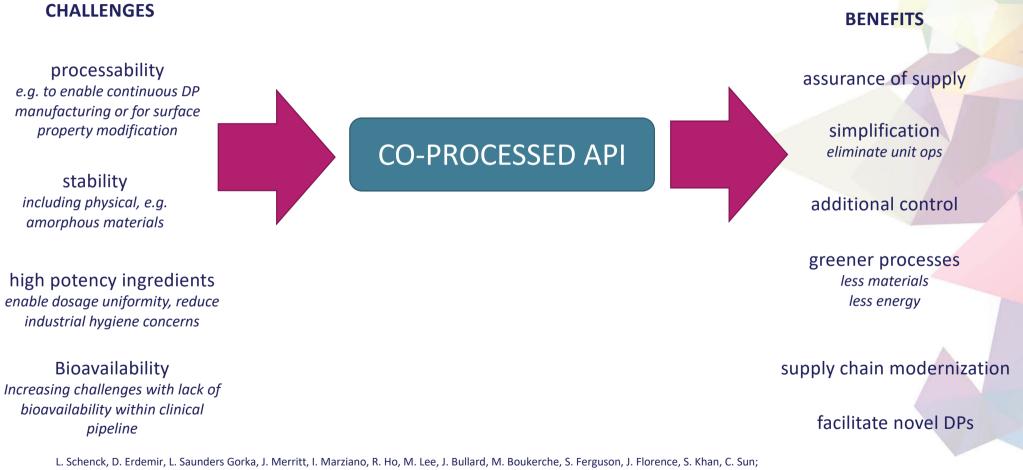
• Nonactive component: A component such as a carrier, additive, or other excipient that is non-covalently bonded to the API and is included in the co-processed API to improve the physical properties.

Generally, nonactive components (e.g. excipients/additives) will be compendial and/or GRAS


For novel materials, relevant CMC info (along with relevant tox info) will be provided in CTD

L. Schenck, D. Erdemir, L. Saunders Gorka, J. Merritt, I. Marziano, R. Ho, M. Lee, J. Bullard, M. Boukerche, S. Ferguson, J. Florence, S. Khan, C. Sun; Recent Advances in Co-processed APIs and Proposals for Enabling Commercialization of These Transformative Technologies, *Mol Pharm.* 2021, 17, 2232-2244

### **Co-processed API Technologies**


|                          | 1                                                                                                                                             | 2                                                                                                                                                                      | 3                                                                                           | 4                                                                                                 |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Route                    | Crystallization and/or<br>Precipitation of API<br>and/or Nonactive<br>Component(s)                                                            | Additive Mediated<br>Crystallization of API                                                                                                                            | Carrier Particles                                                                           | Nonactive Component<br>Addition During API<br>Isolation                                           |
| Mechanisms               | <ul> <li>» Agglomeration</li> <li>» Heteronucleation</li> <li>» Surface coating</li> <li>» Dispersion of API<br/>in polymer matrix</li> </ul> | <ul> <li>» Relative growth-<br/>rate modification<br/>of crystal faces by<br/>adsorption of<br/>additive</li> <li>» Modification of<br/>nucleation kinetics</li> </ul> | <ul> <li>» Adsorption</li> <li>» Confinement</li> </ul>                                     | <ul> <li>» Surface coating</li> <li>» API/nonactive<br/>component<br/>ordered mixtures</li> </ul> |
| Physical State<br>of API | <ul><li>» Crystalline</li><li>» Amorphous</li></ul>                                                                                           | » Crystalline                                                                                                                                                          | <ul> <li>» Crystalline</li> <li>» Amorphous</li> <li>» Gel/Oil</li> <li>» Liquid</li> </ul> | <ul><li>» Crystalline</li><li>» Amorphous</li></ul>                                               |

L. Schenck, D. Erdemir, L. Saunders Gorka, J. Merritt, I. Marziano, R. Ho, M. Lee, J. Bullard, M. Boukerche, S. Ferguson, J. Florence, S. Khan, C. Sun; Recent Advances in Co-processed APIs and Proposals for Enabling Commercialization of These Transformative Technologies, *Mol Pharm.* 2021, 17, 2232-2244



Erdemir *et al.*, Organic Process Research & Development **2019**, 23, 2685-2698; Yeap *et al.*, Organic Process Research & Development 2019, 23, 375-381; Xie *et al.*, Crystal Growth & Design 2010, 10, 3363-3371; Sun *et al.*, International Journal of Pharmaceutics 2018, 539, 184–189; Domenech *et al.*, Chemistry of Materials, 2020, 32, 1, 498–509; Zhang *et al.*, Nanoscale 2017, 9, 11410-11417.

# **Co-processing:** the opportunities



L. Schenck, D. Erdemir, L. Saunders Gorka, J. Merritt, I. Marziano, R. Ho, M. Lee, J. Bullard, M. Boukerche, S. Ferguson, J. Florence, S. Khan, C. Sun; Recent Advances in Co-processed APIs and Proposals for Enabling Commercialization of These Transformative Technologies, *Mol Pharm.* 2021, 17, 2232-2244

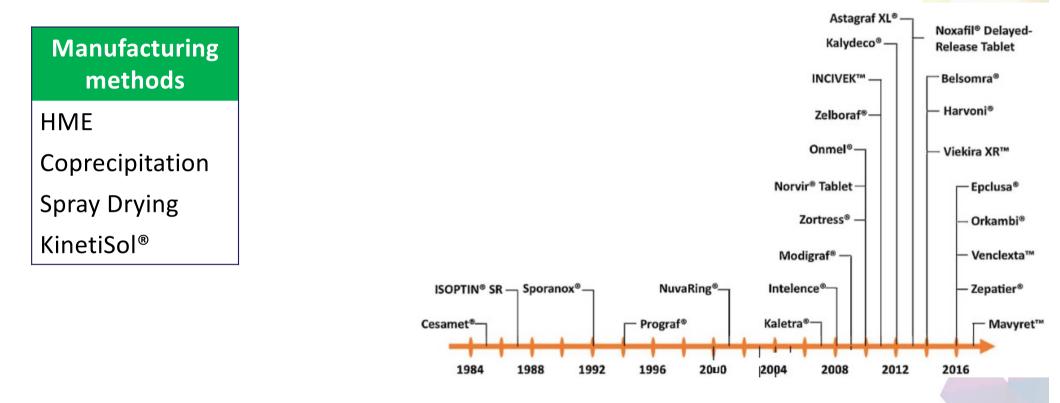
## **Overview**

Steven Ferguson, SSPC Manufacturing Theme Lead, School of Chemical and Bioprocess Engineering, UCD. steven.ferguson@ucd.ie

- Introduction: Co-processed APIs
- Direct Precipitation of ASDs in DS operations
- Integrated DS-DP Operation: Direct Isolation of Engineered Particles via Fluidized Bed Coating
- Integrated DS-DP Operation: Solidification of Ionic-liquid APIs

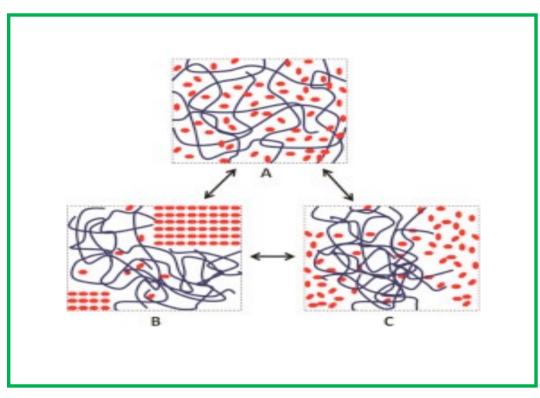


# Formulation of amorphous solid dispersions of hydrochlorothiazide and Kollidon<sup>®</sup> VA 64 by spray drying and co-precipitation


PhD student: Monika Myślińska Supervisors: Prof. Anne Marie Healy & Dr Steven Ferguson

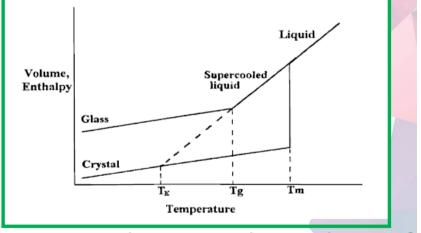


**Trinity College Dublin** Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin


# **Introduction**

## Amorphous solid dispersions on market




Timeline of FDA approval of medicines with APIs in the amorphous state. Adapted from 2.

## Amorphous Solid Dispersion (ASD)



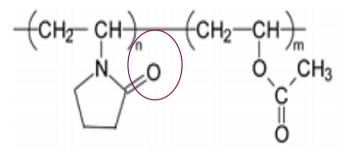
Schematic image of amorphous solid dispersion (ASD) from [3].

Parameters that affect stability of ASD Glass transition temperature Miscibility with polymer Molecular mobility Crystallization tendency Crystallinity



Schematic graph on relationship of volume, enthalpy with temperature **1** for crystal and glass form from [4].

## **Methods**


Parameters of the SD and CP solution.

| Spray-drying                                                                                                                                                 |        |                |                    |                                      |                                  | Coprecipitation |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|--------------------|--------------------------------------|----------------------------------|-----------------|--|
| Drying<br>gas<br>Drying<br>bring<br>Drying<br>Bring<br>Drying<br>Drying<br>Drying<br>Bring<br>Drying<br>Drying<br>Bring<br>Drying<br>Drying<br>Drying<br>Bas | Sample | API<br>(%(w/w) | Polymer<br>(%(w/w) | Total<br>solid<br>content<br>(%(w/v) | Solve<br>nt/An<br>tisolv<br>ent* |                 |  |
| Drying <sup>0</sup> 0°<br>chamber ⊨ Exhaust                                                                                                                  | SD 1   | 30             | 70                 | 2.5                                  | EtOH/                            |                 |  |
| gas                                                                                                                                                          | SD 2   | 40             | 60                 |                                      | Water                            |                 |  |
| Cyclone                                                                                                                                                      | CP 1   | 30             | 70                 | 5                                    | EtOH/                            | una una         |  |
| Dry particles<br>collector                                                                                                                                   | CP 2   | 40             | 60                 |                                      | Hexa<br>ne*                      |                 |  |

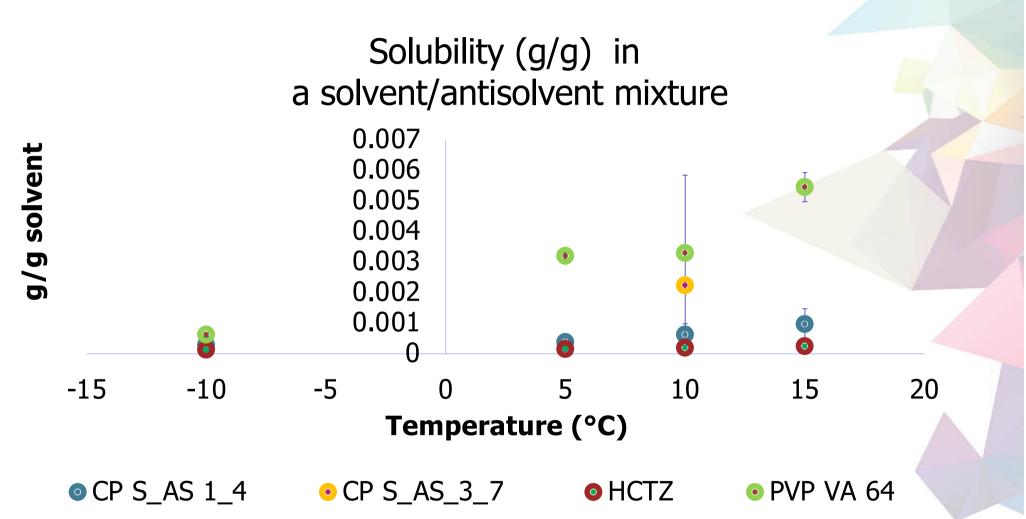
Schematic representation of spray-drying machine from [5].

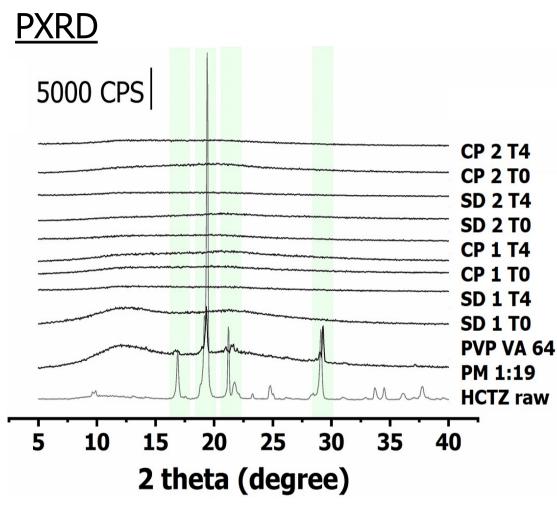
Photograph of Easymax<sup>™</sup> 102 standard set system from Mettler Toledo Easymax <sup>™</sup> Product Catalog.

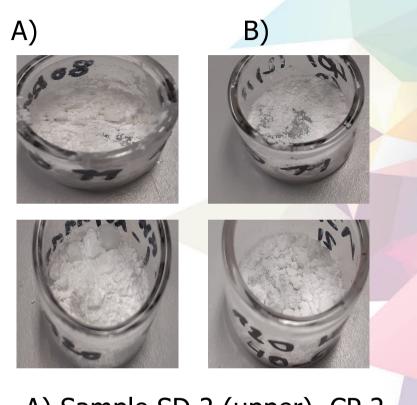
### **Materials**



Chemical structure of Kollidon VA 64® -(Vinylpyrrolidone-vinyl acetate copolymer).


S-NH Chemical structure of hydrochlorothiazide.

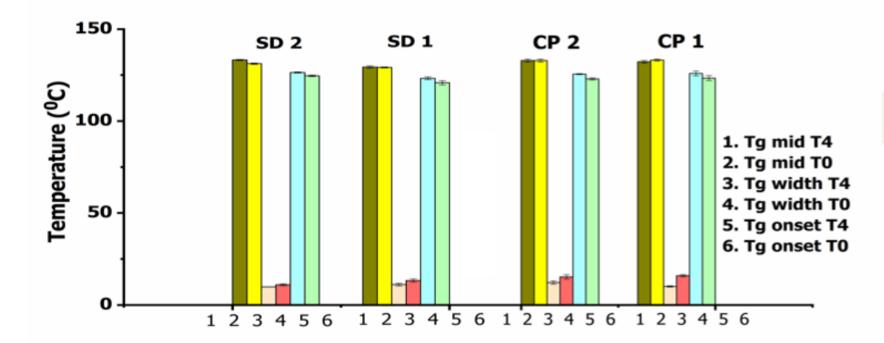

C


 $H_2N$ 

| Parameter                       | НСТΖ                         | PVP VA 64        |  |
|---------------------------------|------------------------------|------------------|--|
| Hansen Solubility<br>Parameters | 26.44 δ (MPa 0.5)            | 23.4 δ (MPa 0.5) |  |
| Fragility                       | GFA II (SD), GFA III<br>(MQ) |                  |  |

**Coprecipitation Parameters** 







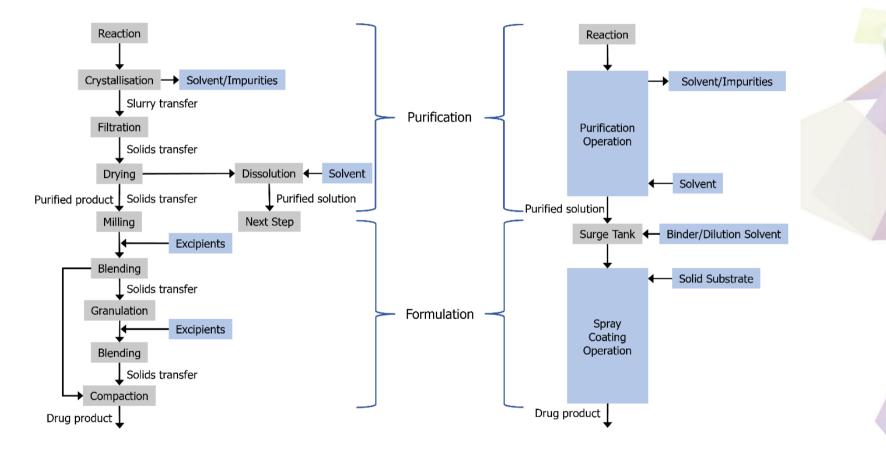

A) Sample SD 2 (upper), CP 2 (lower) T0 B) Sample SD 2 (upper), CP 2 (lower) T4

XRD for CP 1, CP 2, SD 1, SD 2 samples at T0 and T4 of physical stability study.

### **Glass Transition Temperature**



Glass transition temperature (Tg) onset, width, midpoint for samples CP 1, CP 2, SD 1, SD 2 at T0 and T4 of the study.


## **Overview**

Steven Ferguson, SSPC Manufacturing Theme Lead, School of Chemical and Bioprocess Engineering, UCD. steven.ferguson@ucd.ie

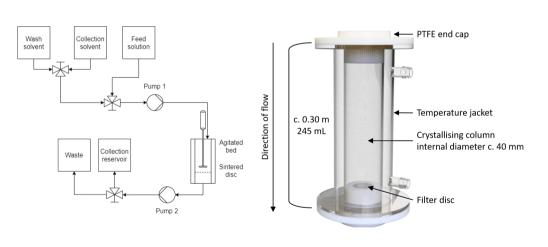
- Introduction: Co-processed APIs
- Direct Precipitation of ASDs in DS operations
- Integrated DS-DP Operation: Direct Isolation of Engineered Particles via Fluidized Bed Coating
- Integrated DS-DP Operation: Solidification of Ionic-liquid APIs

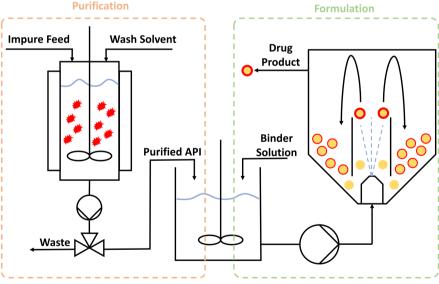


# Integrated Upstream& Downstream Operations



Stocker, M.W.; Harding, M.J.; Todaro, V.; Healy, A.M.; Ferguson, S. Integrated Purification and Formulation of an Active Pharmaceutical Ingredient via Agitated Bed Crystallization and Fluidized Bed Processing. *Pharmaceutics* **2022**, *14*, 1058. https://doi.org/10.3390/pharmaceutics14051058


# Integrated Upstream& Downstream Operations


#### **Purification**

- API Isolation avoided
- Cyclical partial dissolution of API salt was used to produce purified liquid phase stream conditioned for integrated formulation operation

#### **Formulation**

- Spray coating used to process to conditioned effluent
- Sodium Ibuprofen deposited on MCC beads
- Can apply controlled release coatings
- Micro-tablets or Engineered Powders for direct compression easily accessible





Stocker, M.W.; Harding, M.J.; Todaro, V.; Healy, A.M.; Ferguson, S. Integrated Purification and Formulation of an Active Pharmaceutical Ingredient via Agitated Bed Crystallization and Fluidized Bed Processing. *Pharmaceutics* **2022**, *14*, 1058. https://doi.org/10.3390/pharmaceutics14051058

# **Primary Isolation via FB Spray Coating**

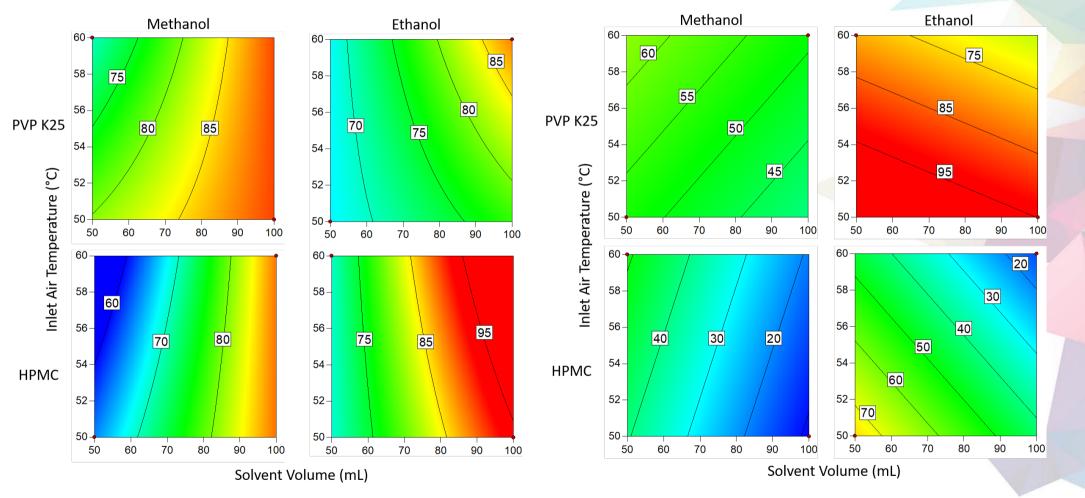



Figure 8. Drug loading efficiency when 3 g of binder is used. Numbers and tie lines correspond to points of equal DLE (%).

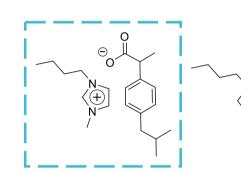
**Figure 9.** Degree of crystallinity when 1 g of binder is used. Numbers and tie lines correspond to points of equal DoC (%).

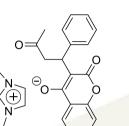
## **Overview**

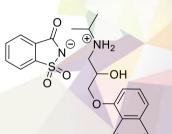
Steven Ferguson, SSPC Manufacturing Theme Lead, School of Chemical and Bioprocess Engineering, UCD. steven.ferguson@ucd.ie

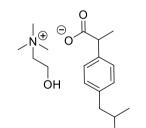
- Introduction: Co-processed APIs
- Direct Precipitation of ASDs in DS operations
- Integrated DS-DP Operation: Direct Isolation of Engineered Particles via Fluidized Bed Coating
- Integrated DS-DP Operation: Solidification of Ionic-liquid APIs

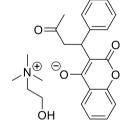



# **Ionic Liquid Forms of Drugs**


- 'Liquid salts'
  - T<sub>m</sub> < 100 °C
  - Highly tuneable properties
  - Eliminate solid forms of APIs
- Drug structures suitable for forming ILs
- Model system:
  - BMIm Ibu
  - T<sub>m</sub> = T<sub>g</sub> = -26 °C
    Viscous oils
  - - Solidify in order to formulate
- Design and synthesis of novel ILs
  - BMIm War, Cho Ibu, Cho War, Pro Sac


Ibuprofen-Based ILs


Warfarin-Based ILs


Propranolol-Based IL









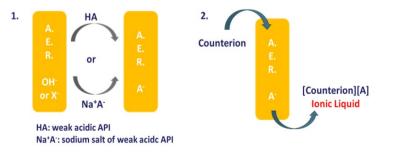


21

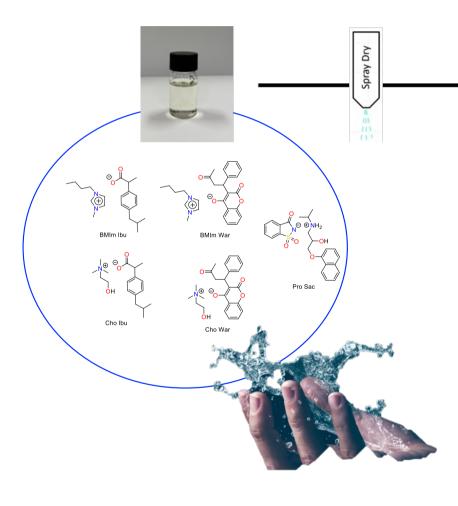
# **Isolation-Free Solidification of API-IL**<sup>c</sup>

- API-ILs can be formed on small scale via metathesis.
- Ion exchange resin method developed
  - Avoid solid product from metathesis reaction
- Combined with isolation free purification processes provides a purified liquid stream.
- Possible to adapt processes to run semi-continuously if desired
- However physical properties of IL streams make further processing problematic

### **Metathesis Reaction**


### $R_1^+X^- + R_2^-A^+ \rightarrow R_1^+R_2^- + A^+X^-$

X = halide, (Cl<sup>-</sup>, Br<sup>-</sup>, l<sup>-</sup>) A = alkali (Na<sup>+</sup>, K<sup>+</sup>)


#### Anion Exchange Resins (A.E.R.)

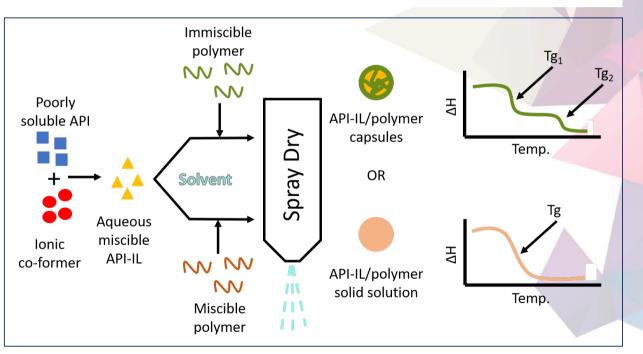
General procedure:

- 1. API or counterion loading
- 2. IL formation



# ILs that you can hold

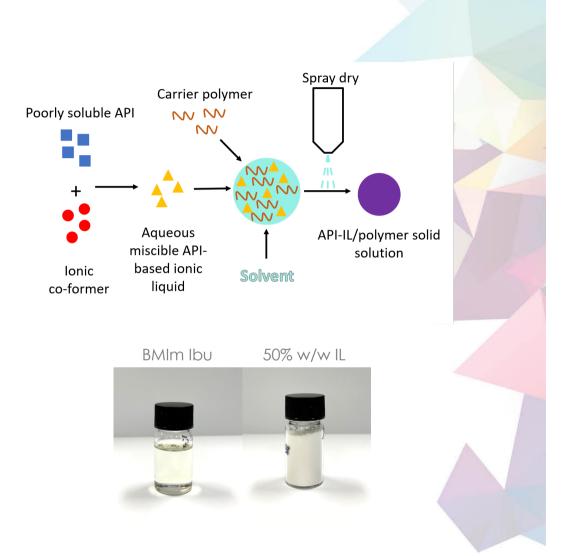






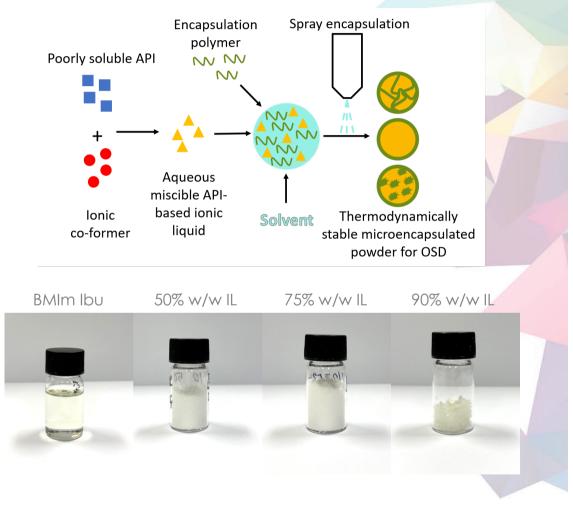

International Journal of Pharmaceutics Available online 12 May 2021, 120669 In Press, Journal Pre-proof ⑦

Formulation of ionic liquid APIs via spray drying processes to enable conversion into single and two-phase solid forms

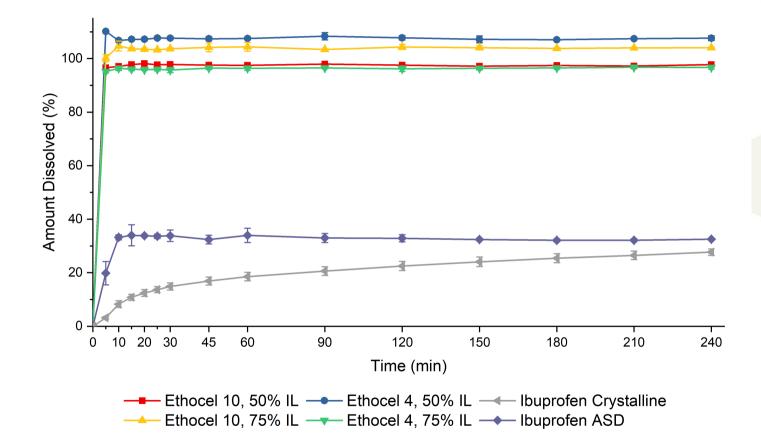

Evangelia Tsolaki <sup>a, b, c, 1</sup> 🖾, Michael W. Stocker <sup>a, 1</sup> 🖾, Anne Marie Healy <sup>d</sup> 🖾, Steven Ferguson <sup>a, b, e,</sup> <sup>f</sup> 🖾



SSPCOO

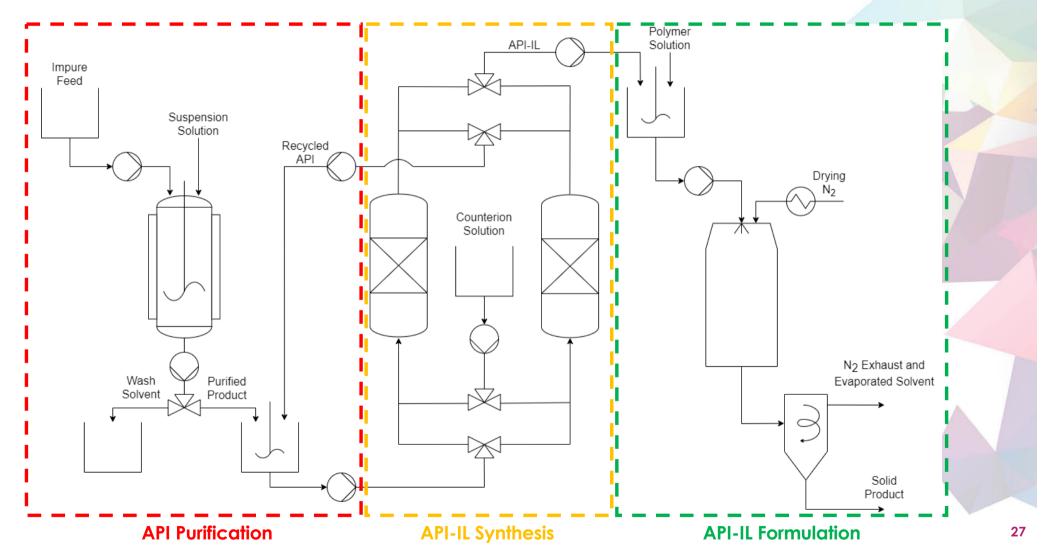

# **Miscible System**

- Form solid solution
- Failed with standard polymers
  - T<sub>g</sub> suppression
- Difficult with extreme low T<sub>g</sub> materials
- Maltodextrin
  - T<sub>g</sub> = c. 200 °C
  - Only soluble in water
- Achieve c. 50% w/w API-IL loading
- Solid state characterised
  - mDSC, ATR-FTIR, pXRD




# **Immiscible System**

- Encapsulate liquid in immiscible polymer
  - Ethyl cellulose
- High loading
  - Failure point 90% w/w API-IL
- Engineer ILs with more favourable bio properties
  - Overcome poor physical properties
- Solid state characterised
  - mDSC, ATR-FTIR, pXRD




### **Immiscible System Dissolution Performance**





# Isolation-Free Solidification of API-ILs





Thank you for your attention!

