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Can we selectively control API attributes (e.g. size; shape; form; purity) and bulk properties (e.g. wettability; flow; compaction)

Roller Compaction

for optimal manufacturability, stability and performance ?



Additional Enabler

Engagement with Regulators
Sustainability

Workflows\ms

Upskilling of existing Tier 1 staff

~

End to End and
Measurement Enablers
End to End

Amorphous systems
In-Line PAT

Materials Characterisation

Digital
Data handling/structuring,
collation and processing

Application of Al to Pharma
datasets for Al, data mining and
enhancing predictive capability

Population Balance and other
mechanistic models

Detailed mechanistic models (gaps
to be defined)

., CMAC
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| Roadmap
' Inputs
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Fig 3. Roadmapping outputs from
Tier 1 members to inform implementation
plan in section.
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Drug Product
Humidified drying
Compaction Simulator
Fouling and Encrustation

Enablers for Compression (via DC
and other routes)

Product performance models
3D Printing

Small-scale solids feeders
Twin Screw granulation

Bio-Relevant Real-Time Release
and Product performance models

-

Drug Substance at
Unit Operation Level

Solid state predictive models -
Mechanistic Mechanistic, data
driven and hybrid

Impurity Rejection during
Crystallisation

Crystallisation of Larger Molecules
2D particle data/measurement

Core Crystallisation - enhanced
scientific understanding and
attribute control

Emerging Particle Engineering
Approaches

Continuous crystallisation
operation

Isolation (filtration, washing,
drying)

A Demand-Led Roadmap

Grow e.g.

Emerging particle engineering approaches
Application of Al to pharma datasets
Amorphous systems

In line PAT

New e.g.

» Crystallisation of large molecules
* Product performance models
Bio-relevant performance and design

Engage — Co-create — Co-deliver — Train — Disseminate - Translate




“ CMAC

" FUTURE MANUFACTURING
RESEARCH HUB

Quality by Digital Design (QbDD)
QTPP » CQAs » Risk Assesment > Product and Process Design » Control Strategy » Quality

Biorel t
Crystallisation Manufacturing IEIEEl
. . . . Performance
Classification Classification Classification
System (CCS) System + (MCS+) System (BPCS)
Molecule » Particle » Bulk » Product and Process » Performance » Patient

Digital Twins & Predictive Models

DataFactories, Data, Analytics, Workflows

RAW MATERIALS RELEASE / DIGITAL INPUT

MicroFactories & Integrated Solutions

Product Design, Development and Release

An Integrated Digital Toolbox

3ISYITY 1INA0Ud ANV
Y1VA INVAITIY AHOLYINO3IY

Establish cyberphysical design &
production systems for medicines

Build on current capabilities e.g. BCS,
DCS, MCS

In silico prediction across materials,
processes & products

Decision support tools for rapid
development

Towards unified data model,
ontologies and semantics for CMIC

Quantitative risk and uncertainty
understanding

QbDD to accelerate from performance
target (QTPP) to production of on spec
product

Accelerate development; enhance
sustainability



", CMAC Working Definitions for a Crystallisation
Classification System (CCS)

RESEARCH HUB

CCS: To classify molecular types in terms of their predicted crystallisation outcomes.

» Support rapid translation
Develop integrated platform/s
to support efficient and science
driven development from mole-
cule to particle

* Inform screening & form

* Probabilistic predictions selection
on how molecular structure Data driven, mechanistic
impacts particle formation and hybrid predictive tools
. for: solvent selection, rapid
* Al/ML tools integrated to Benefits estimation of crystallisagun
inform process selection and model kinetic parameters;
design impurity rejection; in silico
process design

Purpose

In silico process and
particle design tools

* Provide predictions that inform/support decisions
* E.g. Solvent selection; Fouling; Achievable Outcomes/Engineerability; Rapid PBM Development; Particle Engineering route
selection.....




* CMAC Research Implementation Planning Across CMAC

FUTURE MANUFACTURING

RESEARCH HUB PO rtfo I i O

Generative Design Tools

NEW & EMERGING P

Research

Synthesis & crystallisatian 7 s
AREAS Lipid Nano Particle (LNP) 4 Y Outputs / Validated
deisgn and continuous Data / Methods
production Crystallisation of Biomolecules Models

Morphology control Wet milling

i

PARTICLE Engineera- .. CCS/MCS+ :

CCS | MCS+ bility Validated

ENGINEERING S s Data & Models Predictive | | Methods

Tools -

Spherical Agglomeration Co-processing API

Isolation & drying

Amorphous
Filtration models manufacture, CCS Data
prediction & Models
& control

Solid-state ccs
prediction Validated
tool Methods

CRYSTALLISATION

(incl. particle formation)

ML Fouling
Solvent selection tools
Impurity rejection

Predictive madels Workflows & Models
Co-processed API
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" CMAC Researfzh Implementation Planning Across CMAC
Portfolio

RESEARCH HUB

() Core Crystallisation
Generative Design Tools
NEW & EMERGING Solvent selection
Synthesis & crystallisatian bz lidated
AREAS Lipid Nano Particle (LNP) Outputs / Validate _ " . .
B lcontinuous Data / Methods Co-processed APl e.g. addition of functional excipient
production Crystallisation of Biomolecules Models during crysta||isation/i50|ation
Impurity rejection
Morphology control Wet milling . . . .
Continuous isolation & drying
PARTICLE Engineera- CCE‘;/:[CSJ
- CCS / MCS+ bility Validate Workflows, Modelling & Simulation
ENGINEERING Enabling DC 12’8 Models Predictive | | Methods ' &
Tools
Particle Engineering
Spherical Agglomeration Co-processing API
Spherical agglomeration
hed
Isolation & drying g Morphology control
Amorphous (ry
Filtration models manufacture, CCSData |3 Wet milling
prediction & Models =4
& control o . . .
i Q. : Enabling direct compression
CRYSTALLISATION 5" | Solid-state ccs
ML Fouling - prediction Validated N &E . Prioriti
(incl. particle formation) . o tool Methods ew merging Priorities
Solvent selection tools oy
o ... . .
3 Crystallisation of peptides and proteins
Impurity rejection =)
Predictive madels Workflows & Models o g g g :
Co-processed API 5 Coupling synthesis & crystallisation
%‘_
m




Research Excellence & Intensity

S CMAC User-Centric Workflows

RESEARCH HUB

Standardised, model driven, rational experimental design methodologies

Antisolvent Workflow Flowchart

Consider Rescan

no sample

Current CMAC Workflows include:

ffa «—m @ @ Seeded, cooling crystallisation

Antisolvent crystallisation

% Feature Declsxon |m-qe Building 30 I m p u r I ty reJ e Ctl O n
n
processwith Validation Decision 5 Modelling Decision 4 (Mixing Device, features

itrol of particle i
S N ——— s T control
crystal attributes lparameters (mechanistic Testmixers, Stage 7 Stage 8
(Polymorph, PSD, etc ) & empirical) crystallisers and PAT S S Ouclaion
6 -
Crystalliser
Characteristics

Stage 2 Stage 3 Stage4

i YES | solvent/Antisolvent System
Screen Decision 1 Selection Decision 2 Understanding

Prior Ki &
Characterisation

Determine full
mixed-solvent
solubility curves

Collect existing data &
characterise
compound

Classify solvents &
antisolvents from
single solvent solubility

Determine MSZW
and induction times

Decision 1 - Suitable solvents and antisolvents for antisolvent crystalisation?
Decision 2 - Sitable solvent/antisolvent combinations for antisolvent crystallisation? no
Decision 3 - Suitable solvent/antisolvent combinations sitable for desired applications? Decision 3

Decision 4 - Suitable mixing device, crystalliser and PAT?
Decision 5 - Optimised models and processes?

Goal Stage7 Stage 6 Stage 5

Implementation
Optimisation & Equipment Selection of additional

Robust consistent Full Scale

Spherical agglomeration

Wash solvent selection

Prior Solvent Screen Decision Solvent Decision prmyer— prp——
Knowledge Sokvinis classlied Selection <
Existing data on as high or low Detailed temperature
compound collated solubiity dependence & stability

| : t Multicomponent structural
’ . . informatics

Consider
alternatives

Micro-XRT analysis & ML for the

R o D

Decision Process Decision System Decision PAT selection characterisation of mu Iti-particu late
Understanding Undarstand'lnu a:a: bf::&:’:::‘aln:n P— )
P i e s s otldsoubity e mmm— Capsu|e formulations

Crystalliser
Characteristics

Direct compression formulation

GoAL RS e &= design

'c“‘“' “'"coi “h‘.”m Decision =

rystallisation Robust, consistent Decision 1 - Solvents with suitable propertes for cooling crystallisation?
Desired crystal amm lli'ﬂcess vIMlh c:;nlml Decision 2 - System stable & temperature dependent solubility suitable?
Ll Tl pRSs Wkxie Decision 3 - Measurement capabilfty on/ff lne sutable?

Decision 4 - Suitable continuous platform identified?
Decision 5 - Reliable process model?
Decision 6 - Desired product attributes achieved consistently?

Quality by Digital Design (QbDD)




Research Excellence & Intensity

s CMAC User-Centric Workflows

RESEARCH HUB

Standardised, model driven, rational experimental design methodologies

Antisolvent Workflow Flowchart
Rescan

no sample

Consider

Current CMAC Workflows include:

Stage 2 Stage 3 Stage4
Prior Ki & yes System

i Solvent/Antisolvent
Characterisation Screen Decision 1 Selection Decision 2 Understanding
Collect existing data & Classify solvents & Determine full
characterise antisolvents from mixed-solvent Determine MSZW
compound single solvent solubility solubility curves and induction times

} " CMAC A Quality by Digital Design (QbDD) Approach to
0 Desilons - bl e o TSRO e Deve|op Process

oM £ 4 2£m

XRT Data XRT Qualitative
Acauisition Reconstruction inepection
ol vt

Seeded, cooling crystallisation

| .

Antisolvent crystallisation

Decision 3 - Suitable solvent/antisol
Decision 4 - Suitable mixing device,
Decision 6 - Optimised models and ¢

Impurity rejection
Small scale & :
age Selectfrom | ______| experiments and/or A .. .
e et Additive mediated morphology
Validation L arameters )

control

Consistently contro
crystal attributes
(Polymorph, PSD, et

Model informs
{ subsequent experiment;
Estimated model calibration

T . :
Parametrs n Mopicseed eciaticy : Spherical agglomeration
T — pa e L

£ooR a0 :: - Wash solvent selection

Prior Solvent Screen Sensitivity Analysis
Knowledge Solvents classified 4 4

Existing data on as high or low on CPPs in
compound colated solubilty Accessible Process

Conditions

Multicomponent structural

| informatics
Design Space to

MicroFactory
‘Virtual Plant’: in operation: CPPs;
silico step tests Control system;
(Pharma MV) Operating data, Test

Achieve CQAs:
Process Conditions

Stage 6 for Robust

Operation; inform
Process
Understanding PAT

Kinetc process paramete ;/
—_— 7 ™
clgr':mdxﬂcs

GOAL K

Micro-XRT analysis & ML for the
characterisation of multi-particulate
capsule formulations

Decision

Direct compression formulation

St 7 .
Sl design

'c“‘“' “'"coi “h‘.”m Decision =

rystallisation Robust, consistent Decision 1 - Solvents with suitable propertes for cooling crystallisation?
Desired crystal amm lli'ﬂcess vIMlh c:;nlml Decision 2 - System stable & temperature dependent solubility suitable?
el il Tl pRSs Wkxie Decision 3 - Measurement capabilfty on/ff lne sutable?

Decision 4 - Suitable continuous platform identified?
Decision 5 - Reliable process model?
Decision 6 - Desired product attributes achieved consistently?

Quality by Digital Design (QbDD)
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s CMAC User-Centric Workflows

RESEARCH HUB

Standardised, model driven, rational experimental design methodologies

Antisolvent Workflow Flowchart
Rescan

no sample
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Current CMAC Workflows include:
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i Solvent/Antisolvent
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Collect existing data & Classify solvents & Determine full
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compound single solvent solubility solubility curves and induction times

} " CMAC A Quality by Digital Design (QbDD) Approach to
0 Desilons - bl e o TSRO e Deve|op Process

oM £ 4 2£m

XRT Data XRT Qualitative
Acauisition Reconstruction inepection
ol vt

Seeded, cooling crystallisation

| .

Antisolvent crystallisation

Decision 3 - Suitable solvent/antisol
Decision 4 - Suitable mixing device,
Decision 6 - Optimised models and ¢

Stage 7 Selectfrom | ____
Full Scale Workflows
Validation

Consistently contro
crystal attributes
(Polymorph, PSD, et

Building 30

Impurity rejection

Small scale
1 experiments and/or
predicted
parameters

Additive mediated morphology
control

Model informs
subsequent experiment;
model calibration

:iiﬂ,"éi’:“finl improves accuracy : Spherical agglomeration
e rocess Mode Y
mm. T = Wash solvent selection
Koowiedge groveres | Sensithity Anabysie
e Candtions Multicomponent structural
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Design Space to
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Process Conditions

Stage 6 for Robust

Operation; inform
Process
Understanding PAT

Kinetc process paramete ;/
—_— 7 ™
clgr':mdxﬂcs

GOAL K

MicroFactory
‘Virtual Plant’: in operation: CPPs;
silico step tests Control system;
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Crystal Form Informatics: MFA Solid Form Landscape
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Systematic Experimental Workflow:
Process Understanding and Model
Parameterisation

S CMAC

FUTURE MANUFACTURING
RESEARCH HUB

k\ et XYANAC Polymorphs
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Metastable zone widths Secondary nucleation: Seeded . sk actd
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Methodology
* Range of tests
developed to assess: Agglomeration Z
* Metastable o _ Yy '
zone e T ’ ' : X
* Secondary LT ¢ .
nucleation oy : ; -
* Growth rate “ Vol
) S o Fouling induction times
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- Correlation of
particle structure
and properties with
process history




Research Excellence & Intensity

% CMAC Can we accelerate? - DataFactories

RESEARCH HUB

Smart development platforms for utilising AI/ML, automation & collaborative robotics

Fonsedbrallic ® ] A~ ci1birratirnnrm vuctorn MMer I~
Crystallisation Classification System Model

Material sparing approaches

Data rich experiments

v 5

Drive model development &
testing

Scheduling - triggers for each stage and monitoring progress
Communicate experimental conditions

Pass data to db API — Crystallisation Parameter
Monitoring performance of system Database: for crystallisation digital
design & a Crystallisation
Classification System (CCS):
inform rapid development

Supervisory
Control Layer

3

Autonomous robotic system

f/

g

\

DP - Automated mini-batch DC &

Transfer Measure

capsule filling demonstrator &
Autonomous digital

\%ﬁ?
-]
- manufacturing demonstrator to

E\?g %/ " Dispense & aves) v n, predictively formulate new OSDs
. for phase 1 clinical suppl
/ e.g. Raman/ XRPD LQ p ppy

Fouling, Crystallisation Scale Up &
« Image analysis = solubility, onset, size, shape, growth SOI|d Form DataFaCtOI'leS Under

* Agglomeration / fouling propensity - T, Process conditions rpm

* Solute and solvent Mol descriptors — calculated and measured Deve I O p m e nt

* Deliver -> ML models for solubility, morphology, kinetics

™~

Zinsser Chrissy automated solvent and
solid dispensing

/

Plan Model
* Based on surrogate models use Bayesian
optimisation for model driven experimental
design — optimise vs edge of space

[z
|
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S CMAC

FUTURE MANUFACTURING
RESEARCH HUB

Smart development platforms for

Crystallisation Clas

Supervisory
Control Layer

Autonomous robotic system

\%kﬁ:

Zinsser Chrissy automated solvent and
solid dispensing

* Based on surrogate models use Bayesian
optimisation for model driven experimental
design — optimise vs edge of space

Plan

[z
(

sification System Model

Research Excellence & Intensity

Can we accelerate? - DataFactories

utilising AI/ML, automation & collaborative robotics

Scheduling - triggers for each stage and monitoring progress
Communicate experimental conditions

Pass data to db

Monitoring performance of system

i/

(2° Analysis)

Dispose m
e.g. Raman/ XRPD L Q

e

Model

« Image analysis = solubility, onset, size, shape, growth

* Agglomeration / fouling propensity - T, Process conditions rpm
« Solute and solvent Mol descriptors — calculated and measured
* Deliver -> ML models for solubility, morphology, kinetics

1]

Material sparing approaches
Data rich experiments

Drive model development &
testing

API — Crystallisation Parameter
Database: for crystallisation digital
design & a Crystallisation
Classification System (CCS):
inform rapid development

DP - Automated mini-batch DC &
capsule filling demonstrator &
Autonomous digital
manufacturing demonstrator to
predictively formulate new OSDs
for phase 1 clinical supply

Fouling, Crystallisation Scale Up &
Solid Form DataFactories Under
Development
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> EMAC Advanced Manufacturing Technologies

RESEARCH HUB
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CMAC Microfactory Module Development — 5 stage MSMPR

\ A
‘ FUTURE MANUFACTURING
SIEMENS BOOTH WELSH
Integrated Engineeringe Services

RESEARCH HUB

PERCEPTIVE
Aim: design & build flexible, modular processing module — Process PSQ VSN wna o

* Output includes:
* Physical: PAT — data — automation - control

« Digital: equipment & process models

 Make as ease as possible to deploy on new processes
« Siemens- PCS7-SIPAT + Perceptive MPC control framework

« 3DP used for rapid prototyping

 VR/AR being developed

Extended with Modules for
« Seeding

« Cooling

« Antisolvent

« Sonication

«  Wet milling

« Spherical Agglomeration
« Washing & Filtration

Workflow — Data/Parameters — Process Model

O OO—© B — Required Particle Attributes
@ a) 104 Lot A
L LotB
+ : — Automation & Control interface B
=5 ; S = 61— LotE 77N
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CMAC

FUTURE MANUFACTURING
RESEARCH HUB

CMAC Data Architecture

ih

Material, Process, Equipment,
Product Models

Mechanistic
Models

Ontologies Al/ML Models

Off line Analysis 2
4 Metadata

Off line Analysis 3

Internal
Users

Y —

Transform

Experiment 1

.

Extract /

Off line Analysis 4 Capture

Experiment 2

Sensor Array 1

QbDD Workflow

Raw data
stores

‘Srtandardised,
structured
data format

Sensor Array 2
Knowledge

Graphs

Visualisers: PowerBl;
Hololens 2, MS Mesh,
Omniverse, dCMC Report

External

MicroFactory
1

MicroFactory

) Computed Values

Connect to All Data User Queries: FAIR data; FAIR models

Stores, ELN, Historian etc

Calculated values, measured values
plus instrument settings / metadata

ETL Pipeline — preprocessed, standardised data —

Actual Experimental
KGs

Parameters

wn m
o X
> T
@ @
Q =
S 3
D @
3
oL
@

3

2]

User uploads: data to test/improve models

Users




CMAC Exploiting Systematic Data to Build CCS == =

Combined Ch h to Solvent
FUTURE MANUFACTURING ok Library Design

Using
RESEARCH HUB I OOI box Andres Johaston,” R Bharday Mighan” Rajesh Gerumg "> Antomy D. Vasion,
Alastar | Florence,' and Bair. F. Johnston®

RPERC Cone b ot Mmotming b Cotiees Memdecuiog d Cronlietos nd “SPSRC Duchod g

H M 4 ] . . 7\\\
* Exploit workflows to collect systematic data, implementing FAIR principles . C-
e Learn from experience, quickly; pr— e

) Crock tor spciman A random forest model for predicting crystal

* Guided by tools to right technical solution

Rari M. m"wﬂﬂwn Egens, ©°

A i ot s et o ok smyrcocerncal | qurcn cgeed ywallimion which yielded 4 oew OZPN
sconse

o TN, of which

=

~erwor,

-

oyt R

Targeted crystallisation of novel clrbl-mpwe solvates based on a
retrospective Random Forest classification

Asdres Johaston,” Blair F. Jobnston* Alas R. Kennedy” aod Alastair J. Florence™

*Mol Props «Solvent system *Nucleation (1° «Supersaturation ee.g. hardness « Empirical *COBR *PAT enabled o A e Sk e
* Purity ¢ Cooling profile and 29) ¢ Cooling *Form, BCS/DCS ¢ 15t principles *MSMPR ¢Closed loop
* Stability *Morphology *Growth *Fluid dynamics *Purity *Direct «Other feedback control |, SIDITTLITUSSTITT LT LRI
« Compatibility *Agglomeration *«MOC «Morphology design/statistical «STR... e
o Attrition « Defects models «PAT || tetmrem ot it et
esurface

CrystEngComm

k(foul)

A random forest model for predicting the
i crystallisability of organic moleculest

Rajev M. Srardea, Ancres Jonnsion. S F. Johnsion and Aastar 3 Ffiorence”

Sheath
materlal =
Iatex glove/

]
f=4A mp(—m)

Crystallisation Classification

Concentraton (g/100 g solvent)

o o

Tme ins)

3e-4 4e-4 Se-4

Particle size [m)

Brown et al., Mol. Syst. Des. Eng., 2018,3, 518-549




S o CCS Toolbox Development

5
Glasgow

D e.g. Solvents & Solubility Dataset s ‘

Solubility

Couple experimental and calculated &

|||||

Experimental Data LA

I i « Total of 714 sclubility measuremen HH . 11( @

CryStalllsablllty :.c:-ll-'_':'.-:rl. Solutes were all drug-like :-.r AR SO'UbIllty Valu‘es tO traln ML glt'?ﬂt""lw
75 unique solutes

* 49 unigue solwents
*  Melting points and enthalpies of fusion

Amorphous [used for COSMO-AS anly) "

(] COSMO-RS RF-hybrid n--«nd%
£ 1000 1000 Strathclyde
o ARTICULAR s Glasgow o
«  CMIAC Tier 1 partners a W ' v A3y gl o 100
M @) rp h Ology + Internal CMAC experimental data Serlute Sedwait - -
+  Literature structune sEruchure ; 10 :‘
| 2
_ Descriy § o
Solvate Formatlon *  Maolecular descriptor set for each solub e i ¥ PR LK
+  {OSMO-RS prediction for each system eren | ] \ BT
00 o
000 1 0 1 |l 1 0 0 0 1 1 1 1X0
Exparimental s2téty, o' 100, Exgorimenial soldly. p'100g Model R? RMSE MAE Fi
Flow Function cosMoRs | o 10-fold CV COSMO-RS | 020 | 100 | 072
| solubdicy s F-pure (513 D67 D 4! 066
e deseriptars d RF-pure S RF-pu 068 0 043 066
1000 RF-purs RF-hybrid 078 055 036 072
RF-hytad ‘
- : S
B £ 0 g
& B ' * Improved overall performance
] g 3 by exploiting a/l data
3 £5 /‘ [ * Including thermodynamic
| model derived data in model
¢ . i training
100 1000 LRI LN © Good coverage of solvent and
e API attributes

* Improved solubility prediction

» Inform reliable solvent selection for crystallisation



S CMAC

T CCS Toolbox Develo pme Nt

What About Kinetics: e.g. Crystallisability?

Solubility

C ryS [ al I | S ab | I | ty Q. Can we estimate the likelihood of a molecule To0N0 L oty W oo bl peogetid s
crystallising ‘easily’ from its molecular structure? - O Gm G o D om ok e G

00 - @ +

A. Use ML to relate molecular structure to

Amo rp h ous experimental outcome.

Predict Nucleation:

ML Crystallisability Tool —
. ————— —— oy
ounds Crystallise Well 1 Shawty? Is \
Moroholo ot el e gl b b « 308 descriptors [20 (185) and 3D (123)] were calculated
p gy Mictint 8 St | S I, sl Fovcms L. T * RandomForest (RF) model generated using 308 descriptors
Selects random sample of molecules and tests prediction against outcome on that
A structural systematics study that monitored the generation of RF
S I t F t crystallisation behaviour (obtain single crystals for XRD) of
O Va. e Orma |On >400 related acylanilides.._and published the results

Best results: gives ~30% error rate in classification "crystallise” vs "not crystallise”

]Actua! classl Totalcases | % correct | 1, N=231 2, N=151 ClassError

FlOW FunCtion ' | lcrystals | 303 87.7 205 98 | %234 |

R/X = syl falkylosy/ halogen nu H' d lu 2. no crystals 79 B87.1 26 53 3291
= iphe

Bosting 30 Cunmiranmn {1 3

Extended to data from

Crystad

- = Qo oA : - literature for estimation of
o ‘3 T, SO nucleation and growth
Kinetic parameters

No Crystal

(doi.org/10.26434/chemrxiv. 11
708286.v3)

|dentify challenging nucleation properties e.g. seed / external fields

Provide initial parameter estimates for process models
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Solubility & Glass Forming Ability 1‘1 CMAC

ARTICULAR L |

: 1K ~ Glass forming ability (C 5
Crystallisability cooling, o Support vector machine learning (SVM) 1‘* CMAC

. ARTICULAR et
= Why Amorphous: Armor
ooorly soluble compount . - ) .
H = * Tobuild a classification ===l fm memdiod bam mlonn ol bl o il

F In SV we are looking fi \
A totalof 114 data po space. (7 -
meaqsuremants and (e = Different kemels are use  ARTICULAR

Amorphous

Morphology : =
EJ‘ Class A : o= -
Solvate Formation i‘:l=\ e
i 1S o
Flow Function e 1 e g o _ ,
EPSRC IuEctaso R S R A -
Class A Classc - Glass
EPSRE D cunsa forming compounds

« >80% accuracy in prediction of APl GFA

« Importance of interpretability in ML models e.g. ranker importance / SHAP parameters
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Solubility

Crystallisability

Solvent impact on morphology

Amorphous g (o
10 ;. \
o OH - 4
Morphology \ Coate o DN
< s ! }’&“,‘ ; ({.ﬁ:n
# A\ / #010) recrystallised

Solvate Formation

Flow Function

MFA form I; CCOC ref code XYANAC

* >90% accuracy in prediction of shape class

from 30 solvents

A Ay K )

supersalurations
- 216 obervations

Supersaturation dependent

crystal shape
1.2 dichloroethane 1,4 deoxane
1-chlarchutare 1-sethyina phtak b |

2-hutanane
2-propanal
Butyl sostss
athyl sulfide
methane]

1-e=ctaral aniline
Z-methoxyethanal ansole
wowtic acid
FOELOMNE mitroms thans
scetapitrile taloene
chioroform

athanal

DnaF

wthyl acetate

Fadamethane

trigthylamine

trichlarcethylens

* Inform solvent selection to avoid extreme morphologies

CCS Toolbox Development

Solvent impact on morphology

wopnciogy Predetn. |2 |
10-fald OV

* RF Classification a useful tool to predict
solvent effect on erystal morphology (93%)

+ Excellent performance on solvents not in
training set

* H-bonds and London Dispersion forces most
important variables

93.5% |30 = 4 T%)
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Solu b|||ty Assessing Completeness of Screens

Retrospective PCA on CBZ

Crystallisability 3 |
B . .
1T TN Retrospective Random Forest analysis of CBZ
Y-S 2.7 S I N screen
B \_\ . '.o‘::‘, ;.l
Amorphous L
B S . B 3 descriptors of .
e E : 15 ph h | . Experimental
sohventdescriptors | = | SXpermemtal | p | s
PCA
M OrphOIOQy [1] Effective description of diversity o ~
crystallisation output, BUT... “ 05
[2] no reliable correlation between @ - 04 Additional solvates from retrospective analysis
[3] and so no reliable model for ‘pre

.y /

Solvate Formation

Dim 2

Flow Function

*® polymorph

® solvate

-0.3

NM DMA NMP

* Analysis identified certain solvents as likely solvate formers with CBZ

* Where the emphasis is on © the number of forms discovered, retrospective RF analysis
offers an efficient & effective strategy for assessing the completeness of the search and
filling gaps — a more complete search

A Johnston, B, F. Johnstan, A R Kennedy and A ). Florence, CrystEngCanmm, 2008, 10, 23-25

|dentify solvents/conditions to avoid during process development

Target development where failures less likely
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W Impact of Particle Attributes on Powder Flow

Ai 30
Experimental data xE.

Y o @ |

€

Solubility

Crystallisability

Amorphous

Morphology ——— Prediction of FFc
Size distribution QUCPIC
Shape distribution QICPIC
SOIVate Form atlon SRR — Training dataset: 115 instances
Surface Energy GG 10-fold cross-validation
Bulk density FT4
FIOW Fu nction Flow function co-  Shear Cel PSD, shape .
efficient (FFe) and BD I
1 L £ 2
| S| _ _ 1
e - ;
Cohesive asy flowing Free flowing ?“
FFe =4 4 = FFe =10 FFe =10
Performance: Area Under Curve Receiving Operating Characterisfics (AUC — ROC): ROC is the

prabability curve and AUC represents the ability 1o separate batween classes.

« >80% accuracy in predicting FFC class

« Ongoing work to apply to reverse engineer...
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Properties

e.g. Make Particles with Desirable

e.g. Use as design objectives for crystallisation and particle engineering approaches

Advanced Process Control for Continuous Processes

» Data driven model predictive control (Perceptive Eng. Ltd, PharmaMV)

» Evaluate performance: two particle size (D50) setpoint changes applied during a
continuous run

« Implemented on multiple platforms (MSMPR/COBR).

Star: 20 Moy 15

11842000 Range: sh e Ead: 21 Yo 15 16428

APC

20 My 13 16:56:42.000

I 2 1 14542 000
Direct crystal size manipulation

Predict ‘Engineerability’:
Best Route to Obtain The Right Particle

* Inform section of appropriate particle engineering workflow
* Manipulating properties through continuous spherical agglomeration

Intergrown, spherical
agglomerates (100-1000 um)

e.g. Dealing with poor powder flow

N

Particles (10s um)

Spherical
Agglomeration

Loose aggregates (100s um)

Transform “difficult’ particles into well behaved granules
Achievement of desirable flow and mechanical properties

Particle Engineering:
Wet Milling Crystallisation Module

P

Applications:
* Seed generation (single/multi-pass)
* Particle modification

Crystallisation «

Wet
Milling

i‘;

1L Stereg Tark
(Optimax)

Size and shape manipulation

Particle Engineering:
Spherical Agglomeration Module for Flow and DC

Spherical Co-
Agglomeration

: \i

.)‘ -

Stepped shear approach taken for process design Processing a range of model compounds
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Strategic

Statement of

Intent:

Timeline:

Objectives:

Activities:

Deliverables:

Impacts:

2022

Target Areas

Implement strategic
roadmap priorities

Co-created research
proposals in priority
areas + Formulate
Hub-follow on plan

Managed portfolio of
collaborative research

2023

Co-deliver
solutions

Collaborative
research delivery

DataFactory;
Microfactory; Digital
Twin ex Hub & DMZ? +
EPSRC critical mass
post 2023 + 1st
versions of CCS;
MCS+

CMAC Tier 1/2s
actively engaged in
research + new tools
developed

Research Excellence & Intensity

A Research Agenda for Impact

2024

Assess research
tools

Disseminate outputs

+ integrated toolbox
informing new
projects

Demonstration of
research tools from
portfolio in Tier 1
development pipelines
+ BPCS development

Research impacting
Tier 1 internal
development pipeline

2025

Drive acceptance
& adoption

Target remaining
gaps in roadmap

Integrated toolbox of
CCS; MCSs+, BPCS
enabling QbDD

Speed, material
sparing, sustainability
and quality objectives

validated

Create value to partners from a co-created, high quality research portfolio across advanced manufacturing,
digital technologies, materials science to enable QbDD and digitalised CMC processes

2026

Tools in practice

Sustain work &
community

Digitalised CMC
process implemented
in NDA

IDTs and Advanced
Technologies
implemented across
Tier 1s
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> EMAC The Future: agile, flexible, sustainable

RESEARCH HUB

" FUTURE MANUFACTURI
ESEARCH HUB xd

CMAC Lab of the Future: QbDD embedded via integrated manufacturing science + data driven development tools + advanced

process technology + useful Digital Technologies + talented researchers
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Academics Post Docs
*  Prof Gavin Halbert * Dr Magdelene Chong
*  Prof Alison Nordon * Dr John McGinty
*  Prof Blair Johnston « Dr Bilal Ahmed
«  Prof Paul Chapman * Dr Sara Ottoboni
*  Prof Chris Price * Dr Subhaa Arumugam
*  Prof Jan Sefcik * Dr Antony Vassileiou
«  Dr Cameron Brown * Dr Ebeneezer Ojo
«  Dr Daniel Markl * Dr Elke Prasad
*  Dr John Robertson * Dr Humera Siddique
* Dr Vijay Srirambhatla
Research Fellows * DrAnna Trybala
*  Dr Chantal Mustoe
*  Dr Murray Robertson Industry Team
* Massimo Bresciani
Programme Management » Dr Alison Robinson
* Helen Fielden * Dr lyke Oklemelekwe
«  Dr Catriona Clark * Rhys Lloyd
* Drlan Houson * Mohammed Al Qaraghuli

www.cmac.ac.uk
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