

Considering Alternative Approaches and Trial Designs in pJIA Drug Development

pJIA Workshop October 2, 2019

General Issues in Designing Pediatric Trials

- Difficulty recruiting and enrolling pediatric patients
 - Smaller disease population
 - Logistical issues
 - Study palatability issues
- Additional ethical requirements
 - Differences in acceptable trial designs
- Differences between pediatric and adult endpoints
- Differences between pediatric and adult disease course

Current Approach in pJIA

• Randomized-withdrawal trial designs

Randomized-Withdrawal Designs

- Benefits
 - Mitigates concerns of long-term exposure to ineffective treatment (i.e., placebo) due to immediate rescue after flare
- Disadvantages:
 - Carryover effects
 - Difficulties assessing whether underlying disease process is still active
 - Long lag times to adverse events
 - Answers a fundamentally different question than parallel-group designs

Potential Alternative Approaches in Pediatrics

- Borrowing of data
 - Adult and/or historical data
 - Using Bayesian analyses
 - Can be used in combination with PK/PD information to support decision making
- Active-controlled trials
 - Randomization and non-inferiority comparison to an active comparator
- Others (e.g., matching approaches using external controls)

Bayesian Borrowing– Conceptual Overview

- Evaluate the prospective source studies to establish compatibility (check endpoints, inclusion/exclusion, course of disease)
- 2. Summarize the information on the treatment effect from the historical (e.g., adult) studies.
- Use that information to construct a prior for the treatment effect distribution. This will typically involve "discounting" (multiple possible methods).

Considerations for Borrowing

FDA

- Is borrowing appropriate?
 - How similar is the disease to that in the source (adult) data?
 - Is the natural history similar?
 - Can we use the same endpoints?
 - Are the trial designs amenable to borrowing?
- Second, determine the level of discounting in the prior which controls how much we rely on the borrowing
 - Often based largely on clinical judgement
 - Can we pre-specify?

"Discounting" Example - Mixture Prior

Ę

Prior distributions

Dr. James Travis

Tipping Point Analyses

- Apply a Bayesian mixture prior which borrows information for the primary endpoint from adults at a range of different weights (different levels of discounting) and assess the impact on the posterior probability
- Treatment effect prior: $y_p \sim N(\delta_p, s_P^2)$ $\delta_P \sim (1 - a) \times N(0, m * s_P^2) + a \times N(Y_A, s_A^2),$
 - Where: Y_A is the adult treatment effect estimate s_A^2 is the adult variance a is the prior weight (how much rely on borrowed info)

Bayesian Tipping Point Results

Interpretation:

A prior weight of a or larger results in a 97.5% posterior probability of efficacy (positive estimate of treatment effect) which is analogous to a rejection of the null hypothesis with a onesided type I error of 0.025

Conclusions Using Bayesian Borrowing

- Such an analysis may be considered supportive, with reliance on PK data to draw overall conclusions
- It is important to still assess the key baseline disease characteristics and PK similarity between the pediatric and adult study populations
- Further support may be provided by secondary efficacy endpoints and safety

Considerations of Bayesian Borrowing in pJIA

- Is borrowing appropriate?
 - How similar is the disease to that in the source (adult) data?
 - Is the natural history similar?
 - Can we use the same endpoints? Same trial design?
 - Are the trial designs amenable to borrowing? $oldsymbol{\gamma}$
- Second, determine the level of discounting in the prior which controls how much the borrowed information is relied on.
 - Largely based on clinical judgement
 - Ideally pre-specified

13

Active-Controlled Trials

- Randomize subjects to receive either active control or experimental treatment
- Comparison based on non-inferiority

Outcomes (where larger values are desirable)

- Goal: demonstrate that the test drug has an effect by showing sufficiently close to the effect of active control
- NI margin is based on estimates of treatment effects from historical placebo-controlled studies of the active control

Benefits of Active-Controlled Trials

- Eliminates issue of exposure to ineffective treatment (e.g., placebo control arm)
- Allows for long-term, reliable, controlled data (including safety data)
- Cleaner comparisons unconfounded by treatment switching
- May provide a more informative comparison

Existing Hurdles in pJIA

FDA

- Defining an NI margin
 - Traditionally informed by conservative estimate of the effect of the active control from parallel-group, *placebo-controlled trials*
 - Very few placebo-controlled trials exist for pediatrics, requiring
 1. reliance on adult data and 2. clinical judgement
- Powering this study
 - Depending on margin, may require substantially larger numbers of patients
 - May be mitigated by combining with borrowing approaches

Summary and Conclusions

- Issues exist with the current approaches to pJIA efficacy trials
- Alternative options may include borrowing from other data sources (e.g., adults) and active-controlled trials, or some combination
- Other approaches exist and could be investigated (e.g., matching, historical/external controls)
- Implementation of alternative approaches will require additional consideration and development
- Additional discussion of the subjective judgements may be needed with input from clinical colleagues (e.g., disease similarity, established efficacy in adults, knowledge of drug class, etc.)

Acknowledgements

• James Travis

Ē

- Mark Rothmann
- Greg Levin
- Nikolay Nikolov and DPARP rheumatology team

HD)