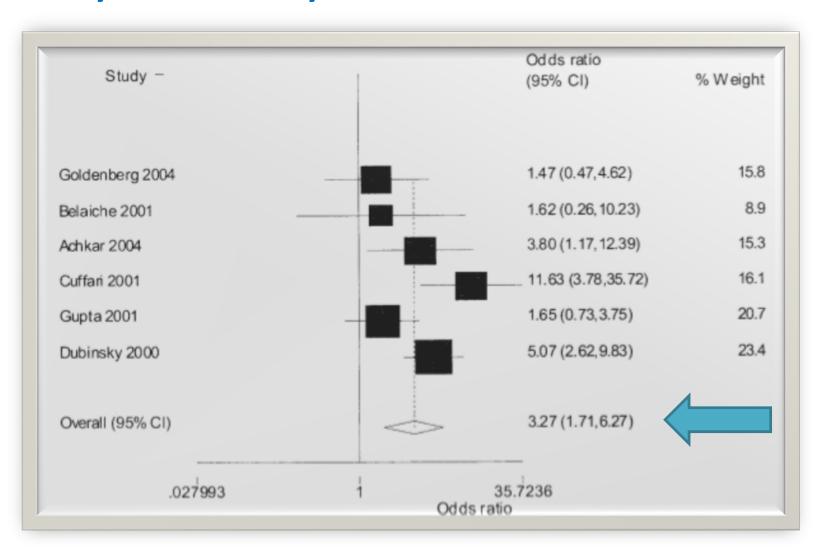

Available Data on Pediatric Exposure Response a Clinician's Perspective

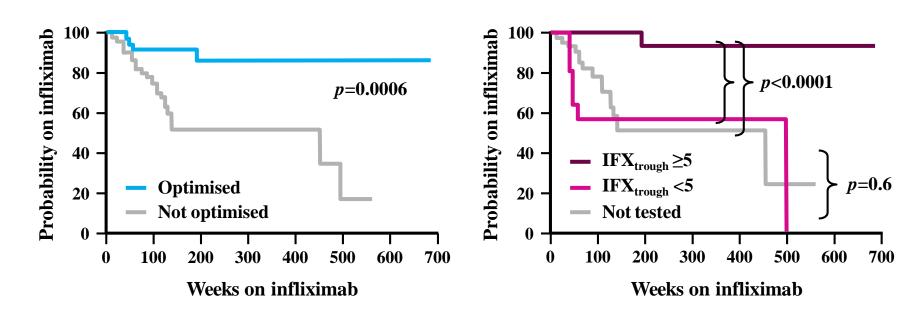
Marla Dubinsky, MD
Professor of Pediatrics and Medicine
Chief Pediatric GI and Nutrition
Co-Director Susan and Leonard Feinstein IBD Clinical Center
Icahn School of Medicine, Mount Sinai New York


Disclosures

- Consultant: Janssen, Abbvie, Takeda, Prometheus Labs, Celgene, Pfizer, Genentech, UCB, Salix, Arena, Eli Lilly
- Research Support: Janssen, Abbvie, Pfizer, Prometheus Labs
- Co-Founder: Mi Test Health
- Co founder: Cornerstones Health

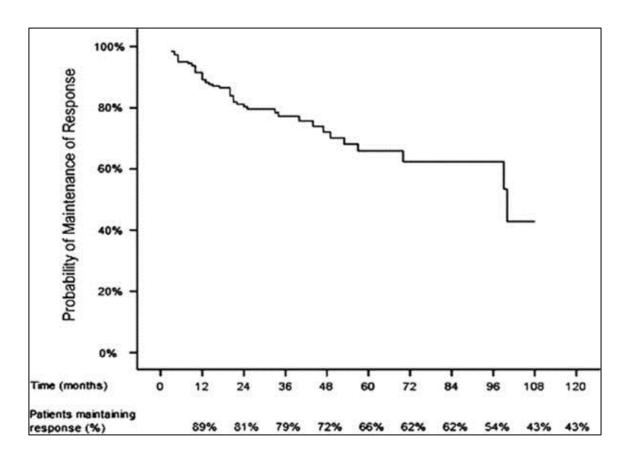
Thiopurine metabolite levels: our first understanding of exposure vs response

Association of 6-thioguanine nucleotide levels and IBD activity: a meta-analysis

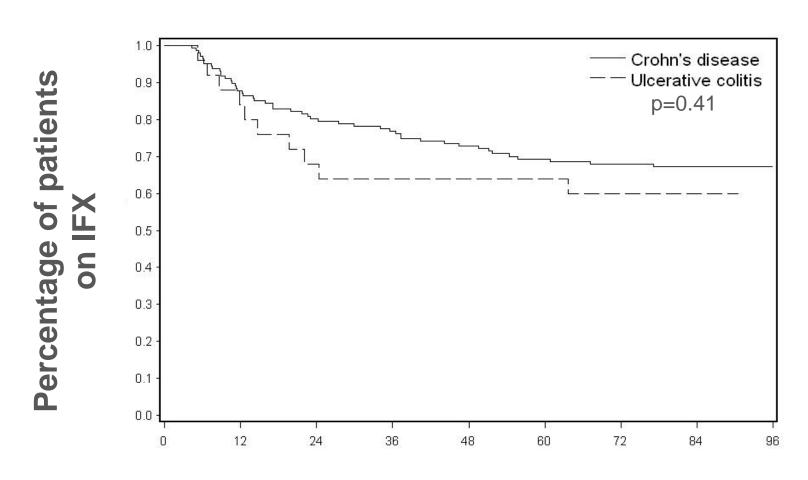


Anti-TNF concentrations correlate with outcome: Cohort studies and post-hoc analysis

	_			
Disease	Drug	Concentration	inical outcome	Notes
CD (Maser CGH 2006)	IF¥	Detectable	Clinical remission, CRP, Endoscopic remission	Trough assessed after 1 year (range after 6-37 infusion)
CD (Cornillie GUT 2014)	IFX	≥ 3.5	Sustained response	Post hoc analysis of ACCENT I
CD (Bortlik JCC 2013)	IFX	> 3	Sustained response	Week 14 or 24 trough
CD (Lamblin JCC 2012)	IFX	> 5.6	Reduced CRP	
CD (Drobne Gastro 2011)	IFX	Undetectable	Loss of response	
UC (Arias JCC 2012)	IFX	> 7.19	Sustained response	
UC (Seow GUT 2010)	IFX	Detectable	Higher rates of remission, Endoscopic improvement	Undetectable serum IFX associated with colectomy
CD/UC (Yanai AJG 2011)	IFX	> 3.8	Failed to respond to increase in IFX or change to another anti-TNF	
CD/UC (Roblin CHG 2014)	ADA	> 4.9	Mucosal healing	Higher trough concentrations associated with clinical remission and mucosal healing
CD/UC (Yanai AJG 2011)	ADA	> 4.5	Failed to respond to increase in ADA or change to another anti-TNF	Population was patients with LOR
CD/UC (Roblin AJG 2014)	ADA	< 4.9 ug/ml	Clinical response to ADA dose intensification	Prospective trial with ADA demonstrating benefit of dose optimization for low trough concentration
UC (Velayos CGH 2013)	ADA	> 4.58 ug/ml	Week 12 clinical response	Week 2-4 concentration predicts week 12 response
CD (Colombel CGH 2014)	СТР	Higher quartile (mean value for highest quartile: 30.1 ug/ml)	Endoscopic and clinical respo	onse and remission


Prospective therapeutic drug monitoring to optimise infliximab maintenance therapy in IBD

- Retrospective cohort of patients in clinical remission, single physician practice
 - Infliximab dose optimisation to trough concentrations 5–10 μg/mL (n=48)
 - No infliximab dose optimisation (n=78)
- Evaluated probability of remaining on infliximab, for up to 5 years


Dose optimisation increases probability of remaining on infliximab up to 5 years

Loss of Response Over Time to Biologics

- Cohort of 309 CD patients who responded to induction with IFX
- Annual risk of loss of response to IFX was 12% per patient-year

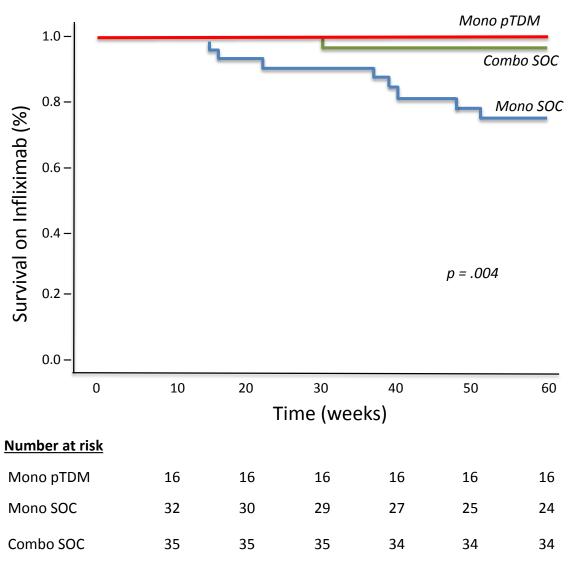
IFX Durability in Pediatric IBD

Time to IFX discontinuation (months)

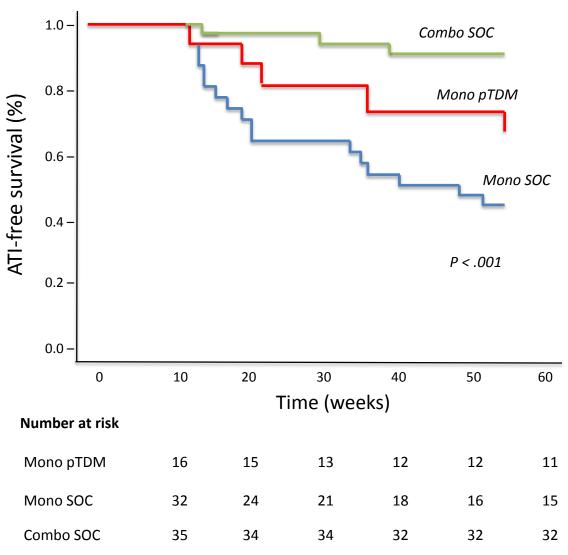
Week 14 Infliximab Levels and Outcomes

(Yes Versus No)	Level, μg/mL	P^{a}
PR	4.7 versus 2.6	0.03
Clinical remission	3.2 versus 2.2	0.07
Clinical and laboratory remission	4.2 versus 3.0	0.07
SDR14	5.5 versus 3.1	0.05
SDR22	5.1 versus 3.0	0.04

Clinical Utility of Week 14 levels Predicting Durability


IFX14 Cut Point, μg/mL	Sensitivity	Specificity	PPV, %	NPV, %	AUC (95% CI)
<u>≥1</u>	80	45	69	60	0.63 (0.49-0.80)
≥2	70	45	66	50	0.58 (0.44-0.72)
≥3	60	50	64	46	0.55 (0.41–0.69)
≥4	53	75	76	52	0.64 (0.51–0.78)
≥5	50	85	83	53	0.68 (0.55-0.80)
≥5.5	47	90	88	53	0.68 (0.57-0.80)
≥6	37	95	92	50	0.66 (0.56-0.76)
≥7	33	100	100	50	0.67 (0.58-0.75)

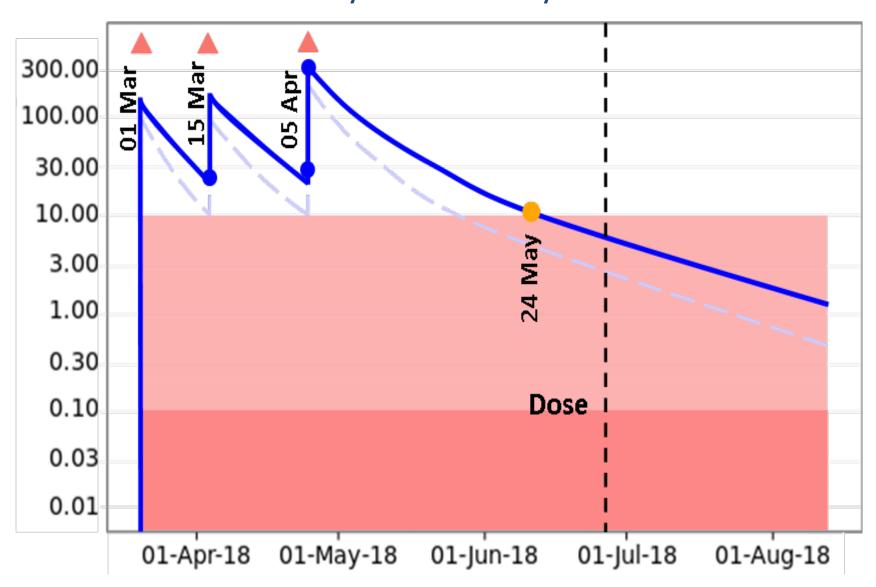
NPV, negative predictive values; CI, confidence interval.


Factors Affecting the Pharmacokinetics of Monoclonal Antibodies

	Impact on Pharmacokinetics
Presence of ADAs	Decreases serum mAbsThreefold-increased clearanceWorse clinical outcomes
Concomitant use of IS	 Reduces formation Increases serum mAbs Decreases mAb clearance Better clinical outcomes
High baseline TNF-α	 May decrease mAbs by increasing clearance
Low albumin	Increased clearance Warsa clinical outcomes
	 Worse clinical outcomes
High baseline CRP	Increased clearance
High baseline CRP Body size	

Infliximab durability Decreased with Monotherapy IFX and Reactive TDM

Antibodies to Infliximab increased with monotherapy IFX and reactive TDM



Lega S et al Inflamm Bowel Dis. 2018 epub ahead of print

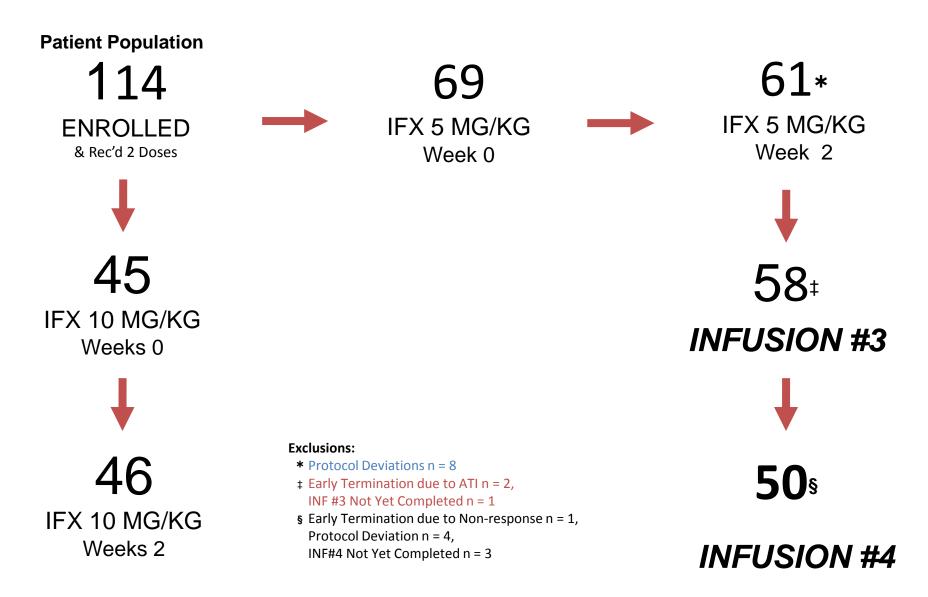

THE FUTURE: THE MAGIC OF INDUCTION PK DASHBOARDS AND EARLY OPTIMIZED MONOTHERAPY

Figure 1. Example of "Precision IFX" iDose Dashboard Forecast (Projections Research)

Bayesian Dashboard System

STUDY POPULATION

Results: iDose-Driven Dosing (N=50)

INFUSION #3

(dosing forecasted using INF #1 and 2 data) IFX target 17

50 →

IFX 5 MG/KG Weeks 0 and 2

58%

On-Label (week 6) (N=29)

42%

Dose Intensified
Dose and/or frequency
(N=21)

- ➤ 86% interval shortening (n = 18)
- > 10% dose increase + interval shortening (n = 2)
- > 5% dose escalation (n = 1)

INFUSION #4

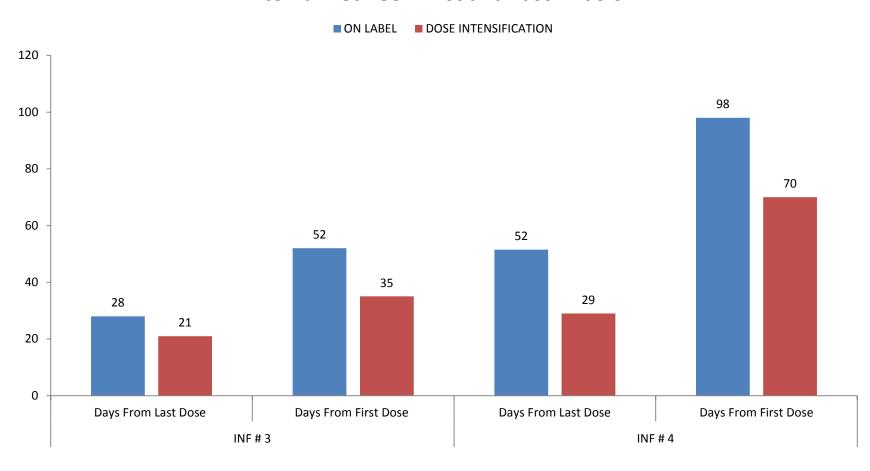
(dosing forecasted using INF #1, 2, 3 data) IFX target 10

22%

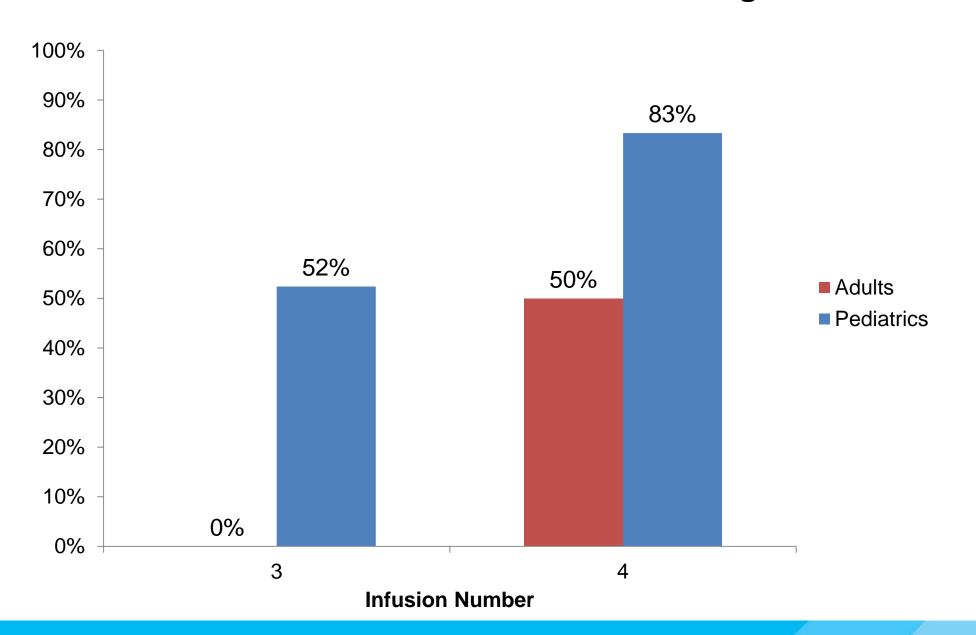
On-Label (week 14) (N= 11)

78%

Dose Intensified


Dose and/or frequency
(N=39)

- > 79% dose increase + interval shortening (n = 31)
- ≥ 21% internal shortening (n = 8)


Results: Median Intervals

Dosing Intervals for Infusions #3 and #4, N=50

Interval Between First and Last Infusion

Pediatric vs Adult IBD IFX Dosing

Infusion 2 Characteristics

Grouped by SOC vs DI at Infusion #3

	INFUSION #2 Characteristics			
	On-Label at Inf#3 (n=29)		Dose Intensified at Inf#3 (n=21)	
	Median	IQR	Median	IQR
Albumin (n=48)	3.90	0.58	3.70	0.50
C-Reactive protein (n=47)	0.11	0.33	0.08	0.30
Weight	53.55	33.68	37.25	16.20
Dose (mg/kg)	5.00	0.11	5.00	0.11
IFX Concentration (n=49)	50.50	18.30	23.80	9.55

Infusion 3 Characteristics

Grouped by SOC vs DI at Infusion #4

	INFUSION #3 Characteristics			
	On-Label at Inf#3 (n=11)		Dose Intensified at Inf#3 (n=39)	
	Median	IQR	Median	IQR
Albumin	4.20	0.50	3.80	0.35
C-Reactive protein	0.06	0.06	0.21	0.46
Weight	57.60	32.35	43.50	22.65
Dose (mg/kg)	5.03	0.06	5.03	0.13
IFX Concentration (n=49)	31.10	22.25	18.95	15.63
# of Subjects w/ ATI (n=3)	0		3	

Exposure Response: A Clinician's Perspective

- Therapeutic Drug Monitoring not a foreign concept to pediatricians
- Early post induction drug concentrations improve durability
- Proactive Induction optimization is superior to post induction
- Children need optimization earlier than Adults
- Exposure not dose is the target
- Age of 18 means you can vote but arbitrary for drug approval as more about pk similarity
- PK dashboards provide a more robust dosing strategy for infliximab