

Bridging Physiology-Based Dissolution Testing to QC testing using Physiologically Based Biopharmaceutics Modeling

Christophe Tistaert Principal Scientist Biopharmaceutics

Current State and Future Expectations of Translational Modeling Strategies to Support Drug Product Development, Manufacturing Changes and Controls

September 23 – 25, 2019 Maryland, US Donna Williams, *Cheerful* Donna Williams, an autistic artist, author and renowned autism advocate, was diagnosed with breast cancer in 2011.

Outline

Setting the scene

Physiology Based Dissolution Testing

- What is?
- PBDT vs QC?
- Bridging?

Case study I

- Clinically Relevant Specifications in late development

Case study II

- Clinically Relevant Specifications during continuous improvement

Closing remarks

Biopharmaceutics in drug product development

Physiology Based Dissolution Test

https://doi.org/10.1021/acs.molpharmaceut.7b00198

PBDT method

- Fixed conditions (simulating the human physiology) No MD needed
- No RA guidelines (acceptance?)
- Reproducibility & validation?
- Complex media
- No sink conditions
- Natural source surfactants as in bile
- Used for formulation screening and selection

QC method

- Conditions are tailor-made for each DP
- According to the **RA guidelines**
- Discriminating in order to reject batches that are "different"
- Reproducible, Robust, Validated
- Sink conditions
- Simple set-up & media
- Used for stability and release testing

Focus on BCS II / IV compounds

https://doi.org/10.1124/pr.112.005660

QC dissolution test for ASDs

- For BCS class 2/4 drugs, HAs expect a discriminative dissolution method (not having fast dissolution profiles)
- However
 - Amorphous DS dissolves very fast (by design)
 - Surfactant is added to reach sink conditions to reach 100% dissolution and avoid precipitation
 - The surfactant (SLS, Tween20, Brij, CTAB, ...) is stronger than biosalts
- Selected to obtain the most discriminating method for formulation variations in CQAs
 - Mostly over-discriminating towards in vivo
 - Try to correlate with in vivo data

PBDT for ASDs

• Reflective for its performance in vivo

- Spring-parachute can be characterized
- Mimics human GI fluids
- QC dissolution method is more limited

• PBDT can be used as input for PBPK modelling

- PBDT: dissolution rate (formulation)
- PBDT: ADME (API)
- PBPK can be used to model the PBDT profiles that lead to a similar in vivo exposure (clinically relevant specifications)

Case study 1

BCS class II compound

Neutral species in physiological pH range

Oral solid development

Crystalline drug substance has low μ g/ml solubility in biorelevant media

Biopharmaceutics assessment

- Facilitate choice of enabling platform
- Guide formulation concept selection and development
- Establish clinically relevant specifications

pharmaceutical companies of

QC method development

Method C

pharmaceutical companies of Johnson Johnson

Janssen

PBDT profiles

In vivo data – Simulate by PBBM

janssen 🔰

pharmaceutical companies of Johnson Johnson

No in vivo data – Predict by PBBM

Mean simulations

Population simulations

Include variability and uncertainty Cross-over design Multiple trials Include intra-subject variability Statistics

Virtual bioequivalence trials																
Virtual Trial Number	w% crystallinity				x % crystallinity				y% crystallinity				z % crystallinity			
	C _{max}		AUC _{0-168h}		C _{max}		AUC _{0-168h}		Cmax		AUC _{0-168h}		Cmax		AUC _{0-168h}	
	90% CI		90% CI		90% CI		90% CI		90% CI		90% CI		90% CI		90% CI	
	ш	UL	ш	UL	ш	UL	u	UL	ш	UL	ш	UL	ш	UL	ш	UL
1	84.90	94.66	93.17	99.29	86.87	96.85	92.41	98.47	82.94	92.47	87.82	93.59	80.05	89.25	87.05	92.76
2	89.30	98.31	91.44	94.65	83.36	91.77	92.89	96.15	83.78	92.24	87.32	90.39	77.01	84.78	87.38	90.45
3	88.92	97.69	92.95	97.81	86.04	94.53	89.36	94.03	85.54	93.98	87.18	91.73	79.47	87.31	84.32	88.72
4	92.12	102.28	93.60	97.80	88.14	97.85	91.23	95.32	83.10	92.25	88.76	92.74	81.51	90.49	86.00	89.86
5	82.95	93.92	93.45	97.58	84.24	95.38	91.07	95.10	80.11	90.71	87.49	91.36	77.78	88.07	85.76	89.54
6	89.65	100.59	91.64	95.68	81.94	91.94	91.03	95.04	81.75	91.72	89.42	93.36	75.72	84.96	85.87	89.66
7	86.92	95.32	93.56	97.62	86.15	94.47	90.34	94.26	83.78	91.88	86.89	90.66	79.43	87.11	85.20	88.90
8	85.04	97.65	94.02	98.22	84.04	96.50	90.38	94.42	83.46	95.83	88.32	92.27	77.65	89.16	85.14	88.95
9	89.99	100.13	92.61	97.81	88.61	98.60	90.58	95.66	81.95	91.18	88.47	93.43	81.74	90.95	85.39	90.18
10	86.58	97.90	92.31	96.20	80.18	90.66	89.06	92.82	83.10	93.96	88.84	92.59	74.06	83.73	83.93	87.47

Safe space approach

QC method selection

Method C

Stack ranking discriminative properties Similar to PBDT

janssen

CRC workflow in practice

CRC workflow in practice

0 + 0

10

20

Proposed Clinically Relevant Specification Time point and Q value where non-BE batches are below Q-value (most) BE-batches are above Q-value In vivo BE In silico BE In silico non-BE

Scope of clinically relevant specifications not limited to QC dissolution clinically relevant acceptance criteria for polymorphic purity (opposed to acceptance criteria based on LOD/LOQ of analytical techniques)

30

Time (minutes)

40

50

Case study 2

BCS class IV compound

pKa = 2.85 (base) and 5.24 (acid)

LogD (pH 4) > 5

Formulated as amorphous sodium salt

- Solubility crystalline API in FeSSIF = 0.001 mg/ml
- Solubility amorphous salt in FeSSIF = 0.140 mg/ml

simeprevir

Biopharmaceutics assessment

- Low QC dissolution results during site stability testing
- Determine main drivers in absorption proces
- Clinical relevance of the current spec / support spec broadening?

Complex PK

Non-linear pharmacokinetics

- o liver metabolism
- o Gut metabolism
- Hepatic transporters
- Active intestinal efflux transporters

Supportive information

- o IV dosing
- Mass balance
- Metabolic profiling
- Different dose levels
- Interaction studies

PBPK model PK elucidation and DDI evaluation

Include dissolution based mechanistic absorption model

Oral dose predictions

https://doi.org/10.1208/s12248-019-0292-3

Validation

Can the model differentiate between a bioequivalent and non-bioequivalent formulation?

Jansser

Parameter sensitivity analysis

PSA on the dissolution rate of biorelevant dissolution profiles from:

- Reference formulations (---)
- Formulations demonstrating slower QC dissolution profiles (---)

Large toleration window for dissolution rate towards changes in bioavailability All observed profiles well within the acceptable range Overdiscriminative QC dissolution method

Supportive information for QC dissolution spec change

Closing remarks

• There is added value for biorelevant dissolution testing besides traditional QC testing.

• However!

- Time consuming
- Resource intensive
- When to start?

• Two cases studies for bridging PBDT and QC using PBBM

- QC method selection and clinically relevant specifications
- CRC during continuous improvement

Acknowledgements

pharmaceutical companies of Johnson Johnson

Thank you

More info? Contact @ ctistaer@its.jnj.com Donna Williams, *Cheerful* Donna Williams, an autistic artist, author and renowned autism advocate, was diagnosed with breast cancer in 2011.

