\land
Y X X Y Y X X Y Y X
XYXXXYXXXXY
\land
\land
УУККУУККУУ

Clinical Development, US

ХХХХХХХХХ X Y X Y X Y X Y X Y

 $YY \land \land YY \land \land YY$ X Y X Y X Y X Y X Y X YXYXXXYXXXY

 $Y \land \land Y Y \land \land Y Y \land$

XYXXXYXXXX

 $YY \land \land YY \land \land YY$ X Y X Y X Y X Y X YXYXXXYXXXY $Y \land \land Y Y \land \land Y Y \land$

 $YY \land \land YY \land \land YY$ X Y X Y X Y X Y X YXYXXXYXXXXY

 $Y \land \land Y Y \land \land Y Y \land$ XYXXXYXXXXY

 $YY \land \land YY \land \land YY$ X Y X Y X Y X Y X YXYXXXYXXXXY

Virtual Bioequivalence: Model development, Verification and Applications $Y \land \land Y Y \land \land Y Y \land$ XYXXXYXXXXY

Amitava Mitra, PhD **Clinical Development, US** Sandoz Inc. (A Novartis Division)

24-September-2019

Current State and Future Expectations of Translational Modeling Strategies to

Support Drug Product Development, Manufacturing Changes and Controls

Disclaimer

This presentation and the information herein are the opinions of the presenter, and not of the presenter's current and past employers.

Outline

- Introduction
 - Bioequivalence study
 - Virtual Bioequivalence (VBE)
- Model development & verification using a case study
- 2 examples
- Conclusion

Bioequivalence (BE) Study

- BE study compares the systemic exposure profile of a test drug product to that of a reference drug product
- For two orally administered drug products to be bioequivalent, the active drug ingredient in the test product must exhibit the same rate (C_{max}) and extent of absorption (AUC) as the reference drug product
- Cross-over PK study, typically in healthy subjects
 - 90% CI of GMR between 80-125% for AUC and $\rm C_{max}$

Virtual Bioequivalence (VBE)

- Use of physiological models to predict the outcome of a BE study comparing test and reference formulations
 - Conduct "x" number of virtual trials in a model generated population in crossover manner to assess the outcome of a BE study
- Applications -
 - Predict outcome to support
 - Formulation changes in late stage clinical development
 - Generic product development
 - Dissolution specification setting
 - Manufacturing site change
 - Waiver of Fed BE study
 - Minimize the number of "pilot" PK studies
 - Provide more confidence in the outcome of a "pivotal" BE study

Virtual BE for Controlled Release Formulation

- BCS 1 compound
- Controlled Release formulation

Intra-Subject CV and Study Power – Fasted State

 Study in 24 subjects (to achieve >80% probability of passing, using true GMR = 0.95 & ISCV = 33%)
SANDOZ

a Novartis company

Intra-Subject CV and Study Power – Fed State

 Study in 58 subjects (to achieve >80% probability of passing, using true GMR = 0.87 & ISCV = 29.5%)
SANDOZ

a Novartis company

Effect of Lower Gut Transit Time on PK

Effect of Lower Gut Absorption on PK

Single Simulations to Assess Model Performance

Population Simulations to Assess Fasted BE

- 10 population simulations were conducted in a cross-over manner with 24 subjects in each study
- CV for physiological parameters were constrained at 10%
- The GMR & 90%CI were calculated in Bioequivalence package in Phoenix

	AUC _{0-t} GMR (90% CI)	C _{max} GMR (90% CI)	AUC _{0-t} GMR (90% CI)	C _{max} GMR (90% CI)		
	Obs	erved	Predicted			
Fast vs. R	1.11 (0.99-1.23)	1.83 (1.67-1.98)	1.09 (0.91-1.18)	1.54 (1.23-1.77)		
Medium vs. R	0.86 (0.74-0.98)	1.02 (0.87-1.17)	0.95 (0.89-1.01)	1.10 (0.88-1.02)		
Slow vs. R	0.75 (0.63-0.87)	0.75 (0.59-0.91)	0.84 (0.77-0.99)	0.84 (0.70-0.95)		

Population Simulations and Regional Absorption Predictions

Population Simulations to Assess Fed BE

 10 population simulations were conducted in a cross-over manner with 58 subjects in each study

	AUC _{0-t} GMR (90% CI)	C _{max} GMR (90% CI)	AUC _{0-t} GMR (90% CI)	C _{max} GMR (90% CI)		
	Obse	erved	Predicted			
Fast vs. R	1.29 (1.18-1.39)	2.07 (1.88-2.27)	1.20 (1.01-1.27)	1.85 (1.71-2.01)		
Medium vs. R	1.06 (0.95-1.17)	1.15 (0.96-1.35)	0.95 (0.89-1.19)	1.21 (1.05-1.41)		
Slow vs. R	0.82 (0.70-0.92)	0.72 (0.52-0.91)	0.88 (0.71-1.01)	0.92 (0.81-1.05)		

Projection of Pivotal BE Study in Fasted and Fed States

	AUC _{0-t} GMR (90% CI)	Cmax GMR (90% CI)
T/R (fasted)	0.89 (0.85-0.99)	0.90 (0.86-0.95
T/R (fed)	1.00 (0.94-1.07)	0.99 (0.93-1.08)

USP-2, pH 6.8

Outcome of 10 Virtual Trials for Each Formulation in Fasted State

		Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10
T/R -	AUC										
	C _{max}										

Example 1: Dissolution Specification Justification

Mitra, Clin Pharmacol Ther. 105, 307-309 (2019)

Effect of Dissolution on Bioequivalence to Clinical Batch

Example 2: Manufacturing Site Change

BCS class 2 weak base

Example 2: Effect of dissolution differences on BE

Conclusion

- Current experiences highlight the increasing value of VBE applications in drug development
- Challenges remain -
 - Better estimation & incorporation of ISCV of physiological parameters
 - Regulatory acceptance of VBE e.g. in study waiver

FDA

Future Use of Virtual BE

- Expand BCS class waivers
- Do we do too many fed BE studies?
- Describe what happens in steady state BE study
- Describe what would happen in a steady state BE study in patients
- Conclude risk in patient population that are not studied

21

Slide courtesy of Rob Lionberger (FDA/CDER/OGD)

Presented at 2016 AAPS Annual Meeting (Role of PBPK based virtual trials modeling in generic product development and regulation)

Acknowledgements

- Bill Zarycranski
- Raja Velagapudi
- Jutta Amersdorffer
- Igor Legen
- Rebeka Jereb
- Aleksander Bajc

