Predicting Drug Exposure in Fetus and Genital Tract During Pregnancy

Adeniyi Olagunju BPharm MRes PhD Tenure Track Fellow Department of Pharmacology & Therapeutics University of Liverpool, UK

tasteless

DC(B)L

- calms without initial excitement
- restores the natural pattern of sleep
- particularly suitable for children and the aged

bottles of 100 and 500. Basic cost to N.H.S. of 12 tablets from dispensing pack of 100-2s. 8d. THE DISTILLERS COMPANY (Biochemicals) LIMITED

bottles of 100, 500 and 1,000. Basic cost to N.H.S. of 12 tablets from dispensing

'DISTAVAL' Forte

100 mg. scored tablets in tube of 12 and

Broadway House, The Broadway, Wimbledon, London S.W.19. Telephone: LiBerty 6600 owners of the trade mark 'DISTAVAL'

pack of 100-1s. 0d.

Tracey standing on block feet with articulated knees

Six pairs of prosthetic limbs made for Tracey Baynam who was exposed to thalidomide *in utero*.

Outline

- Brief overview of modelling approach for key aspects:
 - Maternal adaptation to pregnancy (hepatic metabolism)
 - Foetal circulation
 - Gestational-age dependent changes in foetal organs
- Examples:
 - PBPK model of prenatal exposure to thalidomide vs efavirenz
 - Modelling drug distribution into female genital tract (FGT)
- Lessons and limitations

Maternal Adaptations to Pregnancy

Prenatal Drug Exposure Model Workflow

Olagunju et al. AAS Open Res 1:16 (2018)

Zhang et al. Drug Metab Dispos 45, 920-938 (2017)

Modelling Maternal Hepatic Metabolism

Modelling Foetal Circulation

Source: https://obgynkey.com/fetal-physiology-3/

Modelling Foetal Organs

Final Model Structure

	Name	
1	Variability = 0	
2	Test Subject: Rat	/
3	Test Subject: Human	
4	Route: Oral (Adult)	1
5	Drug: Efavirenz_mother	
6	Drug: Thalidomide_mother	
7	Drug: Efavirenz_backup	N.
8	Drug: Dolutegravir_mother	,
9	Drug: Rilpivirine_mother	

1	Component Name	Value
1	fu_1	0.015
1	pKa_1	10.2
	Kpc_1	4.6
	R_1	0.74
	Clint2A6_1	0.05
	Clint2B6_1	0.55
	Clint3A4_1	0.007
	Clint1A2_1	0.008
N.	Clint3A5_1	0.03
	Caco_1	2.5E-6

S	pecies X Parameters X Rules X Reactions V V	ariants Doses				
Ent	er Rule:				Add	Delete
	Name	Rule	RuleType	Active 🔺		
40	Enzyme expression - Abundance - CYP3A5_1	Abundance_CYP3A5_1 = abs(normrnd(16,5))	initialAssignment	~		^
41	Enzyme expression - Abundance - CYP3A7_fetal	Abundance_CYP3A7_f = abs(normrnd(200.9,111.3))	initialAssignment	~		
42	Enzyme expression - Activity - CYP1A2_Pregnant (%)	Activity_CYP1A2 = 100-3.5814*XGA+0.0495*XGA^2	initialAssignment	~		
43	Enzyme expression - Activity - CYP2D6_Pregnant (%)	Activity_CYP2D6 = 100+2.2695*XGA-0.0348*XGA^2	initialAssignment	~		
44	Enzyme expression - Activity - CYP3A4_Pregnant (%)	Activity_CYP3A4 = 100+2.9826*XGA-0.0741*XGA^2	initialAssignment	~		
45	AUC - plasma conc	AUCplasma = Plasma_conc_1	rate	~		
46	AUC - plasma conc_1	AUCvc_1 = Plasma_conc_1	rate	~		~
Setti Nam	ngs Description e:					
Enzy	me expression - Activity - CYP3A4_Pregnant (%)					🗹 Activ
Ru	le:					
Activ	Activity_CYP3A4 = 100+2.9826*XGA-0.0741*XGA^2					

1. Prenatal Drug Exposure: Thalidomide vs Efavirenz

European Journal of Pharmaceutical Sciences Volume 140, 1 December 2019, 105068

Using mechanistic physiologically-based pharmacokinetic models to assess prenatal drug exposure: Thalidomide *versus* efavirenz as case studies

Shakir Adeyinka Atoyebi ª, Rajith K.R. Rajoli ^b, Ebunoluwa Adejuyigbe ^c, Andrew Owen ^b, Oluseye Bolaji ª, Marco Siccardi ^b, Adeniyi Olagunju ^{a, b} 은 쩓

- Characterise prenatal drug exposure across gestation.
- Model organ-level prenatal drug exposure.
- Compare thalidomide vs efavirenz using qualified models.

Model Qualification for Non-pregnant Adults

Parameters	Observed	Predicted	Predicted/observed ratio
Efavirenz ^a	(Dickinson et al., 2016) n = 605	n = 100	
400 mg			
C ₁₂ (mg/L)	2.10 (2.01-2.20)	1.86 (1.65-2.06)	0.89
C ₂₄ (mg/L)	1.40 (1.32–1.49)	1.30 (1.10–1.49)	0.93
C _{max} (mg/L)	2.52 (2.42-2.62)	2.47 (2.27-2.67)	0.98
AUC ₀₋₂₄ (mg.h/L)	49.2 (47.0–51.5)	42.6 (38.0-47.2)	0.87
600 mg			
C ₁₂ (mg/L)	2.85 (2.70-3.0)	2.93 (2.59-3.27)	1.0
C ₂₄ (mg/L)	1.82 (1.68–1.97)	2.07 (1.75-2.40)	1.1
C _{max} (mg/L)	3.66 (3.51-3.81)	3.86 (3.52-4.20)	1.1
AUC ₀₋₂₄ (mg.h/L)	67.2 (63.8–70.9)	67.3 (59.5–75.0)	1.0
Thalidomide ^b	Thalomid Label_FDA (2001)	n = 100	
200 mg			1
C _{max} (mg/L)	1.76 (30)	2.15 (17.7)	1.2
AUC ₀₋₂₄ (mg.h/L)	18.9 (17)	16.1 (18.6)	0.85
400 mg			
C _{max} (mg/L)	2.82 (28)	4.33 (18.2)	1.5
AUC ₀₋₂₄ (mg.h/L)	36.4 (26)	32.4 (18.5)	0.89

^a Mean (90% CI) at steady-state.

^b Mean (%CV) after single dose.

Model Qualification for Pregnant Women

Pharmacokinetic parameter (units)	Observed values	Simulated values	Predicted/observed ratio
400 mg efavirenz ^a			
Third trimester	(Lamorde et al., 2018) $n = 25$	n = 100	I. I.
C _{min} (mg/L)	1.21 (0.878–1.65)	1.07 (0.915-1.23)	0.88
C _{max} (mg/L)	2.75 (2.25–3.36)	2.11 (1.94-2.28)	0.77
AUC_{0-24} (mg.h/L)	39.9 (30.8–51.7)	35.6 (31.7-39.4)	0.89
600 mg efavirenz ^b			
Throughout pregnancy	(Olagunju et al., 2015a) n = 25	n = 100	1
C _{min} (mg/L)	1.00 (0.429-5.19)	1.44 (0.303-8.61)	1.4
C _{max} (mg/L)	3.49 (1.26–14.4)	2.97 (1.50-9.82)	0.85
CL/F (L/h)	14.1 (2.96–27.7)	12.1 (2.84–32.5)	0.86
AUC_{0-24} (mg.h/L)	42.6 (21.7–203)	49.5 (18.4–211)	1.2
Third trimester	(Cressey et al., 2012) n = 25	n = 100	
C_{min} (mg/L)	1.60 (0.23-8.13)	1.20 (0.237-12.1)	0.75
C _{max} (mg/L)	5.44 (1.90–12.2)	2.72 (1.46-13.4)	0.50
CL/F (L/h)	10.8 (2.7-44.4)	13.8 (2.05–36.0)	1.3
AUC_{0-24} (mg.h/L)	55.4 (13.5–220)	43.5 (16.9–292)	0.79
At delivery			
Umbilical vein	(Cressey et al., 2012) n = 23	n = 100	
Efavirenz concentration (mg/L)	1.05 (0.47-4.51)	0.745 (0.341-3.84)	0.71
C:M ratio	0.49 (0.37-0.74)	0.47 (0.42-0.58)	0.97
Foetal plasma	(Gandhi et al., 2013) n = 50	n = 100	
Efavirenz concentration (mg/L)	1.70 (0.050–7.88)	1.47 (0.654–7.92)	0.86

^a Data presented as mean (95% Confidence Interval).

^b Data presented as median (range).

Foetal Exposure Indices: Thalidomide vs Efavirenz

2. Modelling Drug Distribution in Female Genital Tract

PBPK Model of Drug Distribution in FGT

- Allows simultaneous assessment of foetal exposure and genital tract distribution.
- Several potential applications:
 - Determine optimal product characteristics for PrEP & PMTCT (e.g. intrapartum HIV) drug candidates.
 - Characterise foetal exposure to drugs administered intravaginally.
 - Drug release kinetics of modified release formulations added to extend application.

Efavirenz PK in Cervicovaginal Fluid

Maternal plasma	Genital fluid	Foetal plasma

	Clinical	Predicted			
Age (y)	29.5 (5.2)	30.7 (8.3)			
GA (weeks)	28.4 (4.4)	33.5 (2.2)			
Weight (kg)	66.3 (7.7)	72.4 (1.13)			
Daily dose	600 mg	600 mg			
Maternal plasma (MP)					
AUC ₀₋₂₄ (µg.h/ml)	42.6	42.6			
C _{min} (μg/ml)	1.00	1.14			
C _{max} (µg/ml)	3.49	2.66			
Cervicovaginal fluid (CVF)					
AUC ₀₋₂₄ (µg.h/ml)	13.2	14.4			
C _{min} (μg/ml)	0.242	0.388			
C _{max} (µg/ml)	0.993	0.900			
AUC ratio _{CVF:MP}	0.31	0.34			

Lessons & Limitations

"Since all models are wrong the scientist must be alert to what is importantly wrong. It is inappropriate to be concerned about mice when there are tigers abroad." - Box, GEP. J Am Stat Assoc 71, 791–799 (1976).

- Modelling in this area is sometimes like looking for a needle in a haystack.
- Keys to progress include:
 - Access to robust clinical PK datasets from well conducted studies (e.g. validated bioanalytical method).
 - Know exactly what you're looking for (e.g. efficacy vs safety).
 - Collaborate to get other involved (e.g. share model equations libraries).
 - Understand what is "importantly wrong" per use case.
- Exposure metrics ≠ safety metrics.
- Employing new tools to bridge this gap will help to generate data that will inform decisions about early inclusion of pregnant women in clinical trials.

World Conference on Pharmacometrics (WCoP)

https://wcop2022.org/

WCOP WORKSHOPS ACCOMMODATION SPONSORSHIP WFI COMF PROGRAM REGISTRATION GENERAL INFO **World Conference on Pharmacometrics** Century City Conference Centre, Cape Town whybrid meeting 29 March - 1 April 2022 Registration and abstract submission opening now open

Acknowledgments

Andrew Owen Saye Khoo Rajith Rajoli Alieu Amara **Shakir Atoyebi**

Marco Siccardi

Oluseye Bolaji Ebunoluwa Adejuyigbe **Oluwasegun Eniayewu** Jacinta Nwogu Babatunde Adeagbo **Babajide Shenkoya**

Damien Anweh John Kpamor

