

Maternal-Fetal PBPK Modeling of Antipsychotic Drugs as Case Study

Miao Li

Division of Biochemical Toxicology National Center for Toxicological Research Food and Drug Administration

10-22-2021

Disclaimer

This presentation is the opinion of the author only and does not represent FDA policy and regulation

Perinatal Health and Regulatory Need

- Need for computational alternatives to support the evaluation of safety and efficacy of therapeutic agents for patients in perinatal life-stages who are frequently excluded from clinical trials
- Utilize life-stage PBPK models as tools to evaluate and optimize treatments specifically in the perinatal life-stages
- The confidence in the use of such tools in regulatory decision-making and pose challenges in conducting timely and thorough review of submissions

Project Goal and Purpose

- To develop a PBPK model for different perinatal life stages (fetuses, neonates, infants, young children, pregnant and lactating women)
- To serve as an in-house tool allowing for flexibility to conduct any investigative analysis, and to better inform dosing for antipsychotics and COVID-19 treatments in these data-sparse populations

Strategy for Model Development

Curate data: Gather available information (existing databases, body of literature, and FDA in-house data) for parameterization of perinatal life-stage PBPK models

Design model:

- Maternal Component
- Fetal Component

- Population Modeling
- Other Perinatal Life-stages including Pediatrics

Code model component: Code the model using an open-source language based on the determined model structure and parameters. Conduct sensitivity analysis to confirm model dimensionality

Test model component: Verify the model's predictive capability using case studies

Document model and scope gap/needs: Document model code including assumptions and decisions. Identify gaps in data and modeling needs to guide future research to facilitate regulatory application of PBPK modeling tools in perinatal periods

Repository for Physiological Changes

Equations for Maternal Fetal Physiological Changes

Parameters	Abduljalil et al. 2012 & 2019	Dallmann et al. 2017	Kapraun et al. 2019
Total Body Fat (kg)	17.14+0.1305*GA+0.0008*GA^2 (Eq 9)	20.2+0.125*FA (Eq 15)	17.067+0.14937*GA (Eq 3)
Cardiac Output (L/h)	301+5.916*GA-0.088*GA^2 (Eq 14)	6.09exp(-exp(-0.352logFA + 1.36)) + 5.14 (Eq 19 L/min)	301.78+3.2512*GA+0.15947*GA^2- 0.0047059*GA^3 (Eq 13)
Plasma Volume (L)	2.50-0.0223*GA+0.0042*GA^2-0.00007*GA^3 (Eq 15)	2.36+0.0000841*FA+0.00395*FA^2- 0.0000817*FA^3 (Eq 29)	2.4958+1.2406/(1+exp(-0.31338*(GA-17.813))) (Eq 5)
Hematocrit (%)	39.1-0.0544*GA-0.0021*GA^2 (Eq 17)	40.1+0.0299*FA-0.0180*FA^2+0.000401*FA^3 (Eq 21)	39.192-0.10562*GA -(7.1045* 10^-4)*GA^2 (Eq 24)
Albumin (g/L)	45.8-0.1775*GA-0.0033*GA^2 (Eq 19)	14.7*exp(-0.0454*FA)+31.7 (Eq 9)	NA
Alpha-1-Acid Glycoprotein AAG (g/L)	0.74-0.0088*GA+0.0001*GA^2 (Eq 20)	0.0000768*FA^2-0.00573*FA+0.701 (Eq 11)	NA
Glomerular Filtration Rate	114+3.2367*GA-0.0572*GA^2 (mL/min, Eq 27)	0.113+8.73*FA-0.716*FA^2+0.0245*FA^3- 0.000294*FA^4 (FA<=14) 0.15 (FA>=14) (L/min, Eq 27)	(17+(12.5-17)/40*GA)/100 (unitless, Eq 16)
Placenta Volume	0-0.716*GA+0.9149*GA^2-0.0122*GA^3(mL, Eq 43)	0.937*exp(-6.10*exp(-0.0813*FA))-0.00211 (L, Eq 48)	0-1.7646*GA+0.91775*GA^2- 0.011543*GA^3 (mL, Eq 8)
Amniotic Fluid Volume	1.9648*GA-1.2056*GA^2+0.2064*GA^3- 0.0061*GA^4-0.00005*GA^5 (mL, Eq 44)	exp(-10+1.22*GA- 0.0653*GA^2+0.00169*GA^3- 0.0000169*GA^4) (L, Eq 33)	822.34/(1+exp(-0.26988*(GA-20.150))) (mL, Eq 9)
Fetal Tissue Volume	0.01*exp((0.955/0.0702)*(1-exp(- 0.0702*GA))) (mL, Eq 42)	5.90/(1+exp(-4.45*logFA + 15.8)) (L, Eq 39)	NA

Abduljalil et al. 2012 (PMID: 22515555); Abduljalil et al. 2019 (PMID: 29987449); Dallmann et al. 2017 (PMID: 28401479); Kapraun et al. 2019 (PMID: 31048866); Zhang et al. 2017 (PMID: 28588050)

Code the Pregnancy PBPK Model in R

Pregnancy PBPK Model

BW: body weight; CO: cardiac output; HCT: hematocrit; GA: gestational age; FA: fertilization age

Application of the Model to Antipsychotic Drugs

- Antipsychotics are widely used during pregnancy and sometimes for the pre-existing condition
- >Antipsychotics are often off-label use for pregnant women
- Antipsychotics are being prescribed increasingly during pregnancy and the postpartum period
- The dose-dependent drug effects and toxicity of antipsychotics on fetuses are still lacking
- Concerns and debates for birth defects using of antipsychotics during the first trimester
 - Aripiprazole: High Protein Binding; Multiple Metabolic Enzymes (with more than one metabolites)
 - o Risperidone: High Protein Binding; Multiple Metabolic Enzymes
 - Clozapine: High Protein Binding; Multiple Metabolic Enzymes

Application of the Model to Antipsychotic Drugs

Drugs	Human	logP	MW	рКа	Кр	Metabolism	BDDCS	ECCS	Available PBPK	Available	Available
	fup									pregnancy PBPK	pregnancy PK data
Aripiprazole	0.01	5.21	448.4	7.6	All Tissue to Plasma Partition	CYP3A4 CYP2D6	2	2	Yes (Vieira et al. 2014)	No	Yes
Risperidone	0.1	4.07	410.5	8.2	Coefficients were Calculated using	CYP2D6 (major) CYP3A4 (minor)	1	2	Yes (Kneller et al. 2020)	No	Yes
Clozapine	0.05	3.21	326.8	7.5	Rodgers and Rowland Method in Simcyp	CYP1A2 CYP2D6 CYP3A4	2	2	Yes (Wong et al. 2019)	No	Yes

Data Available for Non-Pregnancy Model

- Available adult PBPK models
- Aripiprazole: Vieira et al. 2014 (PMID: 24556783)
- Risperidone: Kneller et al. 2020 (PMID: 31359271)
- **Clozapine**: Wong et al. 2019 (PMID: 30676661)

Data Available for Pregnancy Model

Available PK data for non-pregnant adults and pregnancy Aripiprazole: Boulton et al. 2018 (PMID: 18563956); Westin et al. 2018 (PMID: 28643331) Risperidone: Novalbos et al. 2010 (PMID: 20814331); Westin et al. 2018 (PMID: 28643331) Clozapine: Hägg et al. 1999 (PMID: 10379638); Westin et al. 2018 (PMID: 28643331)

Values of physicochemical parameters are from DrugBank and PubChem

in vitro to in vivo Extrapolation (IVIVE)

In Vitro CLu_{int}

 $CL_{int, in vivo} = (CL_{int, in vitro}/FU_{mic}) \times ISEF \times MPPGL \times Abundance \times liver weight$

Drugs	Metaboli c Enzyme Isoforms	Metabolic Pathways	Vmax	Km	CLint (in vitro)	fumic: fraction unbound in m icrosomal systems (if available)	ISEF: Intersystem Extrapolation Factor (if recombinant enzymes used)	MPPGL: Microsomal Protein Per Gram of Liver (life-stage specific)	Total CLint (in vivo, per of kg liver)	References
Unit	N/A	N/A	nmol/nmol P450/min	uM (pmol/µL)	µL/min/pmol	no units	unit less	mg/g	L/hr/kg	N/A
Aripiprazole	CYP2D6 CYP3A4	DM-1451 DM-1452 OPC-14857 DM-1451 DM-1452 OPC-14857	0.42 3.92 2.81 12.5 19.6 6.21	15.7 27.9 26.2 514 757 298	0.027 0.141 0.107 0.024 0.026 0.021	0.435 0.435 0.435 0.435 0.435 0.435 0.435	1.069 1.069 1.069 0.226 0.226 0.226	40 40 40 40 40 40	26.68	FDA Review (2001)
Rispiridone	CYP2D6 CYP3A4	NA NA	NA NA	NA NA	7.550 0.180	1	1	40 40	211.92	Vieira et al. 2014
Clozapine	CYP1A2 CYP2D6 CYP3A4	NA NA NA	13.1 4.5 11.6	14.2 19.5 91.6	0.923 0.231 0.127	1 1 1	0.571 1.069 0.226	40 40 40	81.12	Ghoneim et al. 2020

In vitro to in vivo extrapolation (IVIVE)

Proctor et al. 2004; Song et al. 2017

FDA

Model Simulation

Model Calibration with Non-pregnant Adults

Model Evaluation with Daily Dose through Pregnancy

Pregnant Women Population

Based on National Health and Nutrition Examination Survey (NHANES)

Age

Figure 3. Birth rates, by age of mother: United States, 1990–2018

Ethnicity & BMI

Population Pregnancy Model

• Hierarchical Workflow (2 Steps)

20

Gestational Age by Week

Time dependent changes Dynamic Variability

20 Gestational Age by Week

14

Pharmacokinetic Profiling

• By applying the population model based on different ethnic, BMI and age groups, the subgroups can be separated to view the PK profile individually

Maternal-Fetal Model Simulation

Model Assumptions:

- 1. The placenta considered as a permeability-limited compartment.
- 2. The passive diffusion of drugs is proportional to the placenta villous surface area.
- 3. The drug exchange between amniotic sac and maternal circulation considered negligible.
- 4. The drug concentrations in fetal venous plasma equals to drug concentrations in umbilical cord plasma.

Observed data from previous reports

	Drug Con	centrations in Umbil	Dose (mg/day)	References	
	n	Mean (ng/mL)	SD		
Aripiprazole	3	44.33	7.76	10 mg/day	Windhager et al. 2014
Risperidone	6	1.6	1.05	3 mg/day	Newport et al. 2007
Clozapine	5	70.4	27.4	200 mg/day	Imaz et al. 2018

Umbilical Cord Plasma Concentrations of Antipsychotics

Flexible to Keep up with Current Research FDA

Type

Abduljalil 2012 Abduljalil 2020 Ke 2019

CYP1A2 Activity

CYP3A4 Activity

Aripiprazole oral 15 mg daily (using Abduljalil et al. 2012 equation)

Abduljalil et al. 2012 (PMID: 22515555); Abduljalil et al. 2020 (PMID: 32840724); Ke et al. 2019 (PMID: 30924921)

Conclusions

- Pregnancy and maternal-fetal PBPK is a useful tool to predict the intra-uterine exposure
- The population model based on the demographics of real population can help advance the variability assessment in these susceptible populations
- Maternal-fetal PBPK model can help determine the safety and efficacy of therapeutic agents and can also be adapted for chemical risk assessment as necessary

Acknowledgements

FDA

- Dr. Annie Lumen
- Dr. Kiara Fairman
- Dr. Darshan Mehta
- Dr. Pavani Gonnabathula
- Dr. Me-Kyoung Choi
- Dr. Prashant Kumar
- Division of Biochemical Toxicology Modeling Group
- Co-PIs: Dr. Minjun Chen, Dr. Christine Nguyen, Dr. Victor Crentsil, Dr. Blessy George, Dr. Jian Wang, and Dr. Yaning Wang
- Funding of Perinatal Health Center of Excellence (PHCE) and COVID-19 Supplement Funds
- Supporting from National Center for Toxicological Research and Division of Biochemical Toxicology