

Translating the effect of product manufacturing variants from in vitro to the clinic: Current possibilities and gaps for extended release formulations

Nikunjkumar Patel

M-CERSI Workshop, September 2019 University of Maryland, Baltimore, USA

Disclaimer: Views expressed here are mine and does not necessarily reflect the opinion of any of the collaborators

Predicting Oral Drug Absorption

Broadly categorized into two approaches

IVIVC

- When PBBM model cannot fully capture the controlling mechanisms
- More biomimetic (complex) *in vitro* experiment to capture the likely *in vivo* formulation behaviour coupled with *in vivo* disposition model
- In vitro to in vivo relationship can be established by deconvolution and convolution methods
- Current common practice for ER/CR/MR formulations

IVIVE

- When PBBM model can (is expected to) capture the controlling mechanisms reasonably well
- Well-defined and complimentary in vitro experiments informing the biomimetic (complex) modelling to parameterize and validate/verify the predictive power of the model
- Would require mechanistic models of excipient interaction, polymer erosion, swelling, diffusion into the PBBM & suitable *in vitro* experiments

Predicting Oral Drug Absorption of Drug Products: Current Status

Sensitivity to physiological regional differences and BSV or WSV*.

High

Applicability to complex formulations within the current models

Low

mechanistic dissolution models; e.g., Noyes-Whitney or the extended Wang-Flanagan .

Semi-mechanistic dissolution models: lumped parameters / models; e.g., Z-factor.

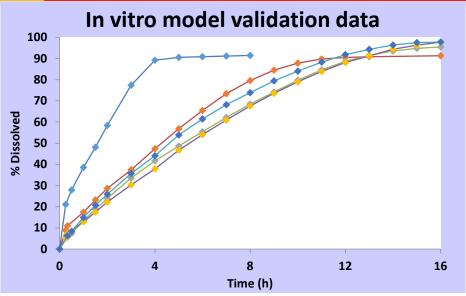
> Empirical models; e.g., Weibull function.

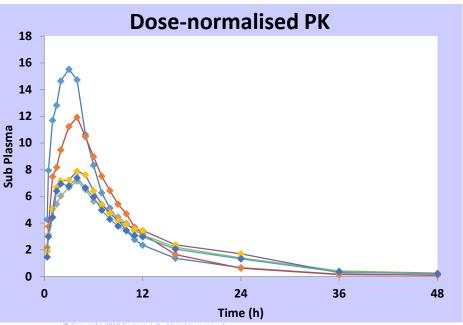
*BSV, WSV – Between, Within Subject Variability

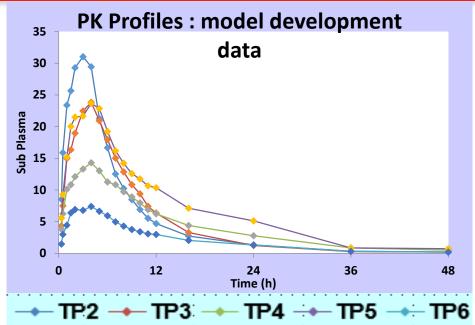
CERTARA

Case Studies

- 1. IVIVC to support ER formulation optimization
- 2. Convolution Based population IVIVC approach
- 3. Mechanistic modelling of enteric coated pellet formulations

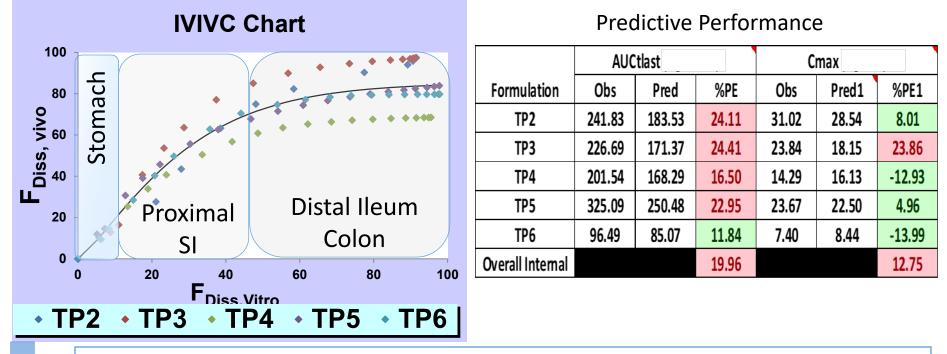

Case 1. IVIVC for ER formulation Development


Extended Release formulation with two polymer and dosage strength combinations to be evaluated (5 variants)


Questions to be answered

- Better IVIVC understanding via PBBM modelling?
- Does PBBM add to understanding of *in vivo* release?
- Is there added value of using individual subject data?

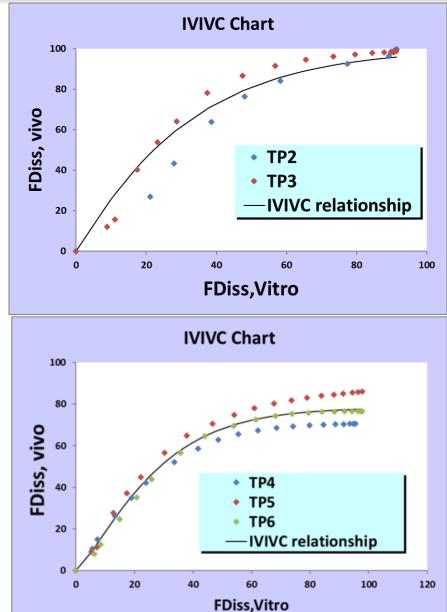
Exploratory Analysis - in vitro dissolution and in vivo PK data



- IVIVC seems likely but expect issues with TP3
- TP-4/5/6 appears difficult to discriminate
 - May need some investigation with *in vitro* experiment or mechanism of release from formulation or *in vivo* data

CERTARA

Two Stage Sequential IVIVC Approach – Mean PK data


- Deconvolute (estimate) in vivo dissolution profile from PK data
- Identify and verify, if any, (predictive) relationship between in vivo and in vitro dissolution

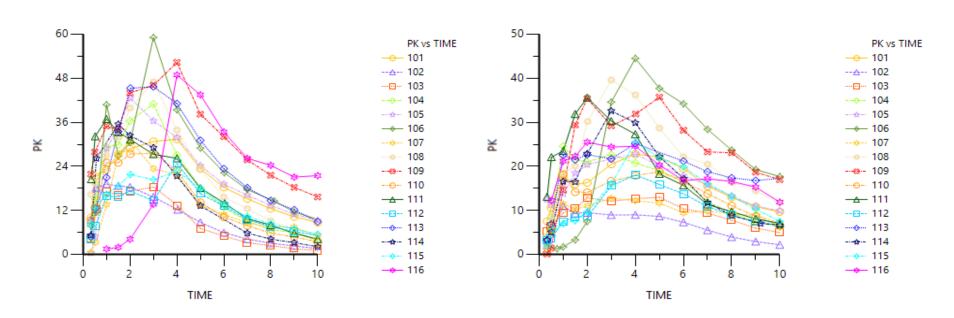
- Extent of release/dissolution *in vitro* and *in vivo* is significantly different and formulation dependent
- TP2/3 and TP4/5/6 have different excipients and hence release mechanisms
- There is poor correlation for release/dissolution in colon

CERTARA

Two Sets – TP2/TP3 & TP4/5/6 – Sequential Two Stage IVIVC

	AUCtlast			Cmax			
Formulation	Obs	Pred	%PE	Obs	Pred1	%PE1	
TP2	241.82	209.12	13.52	31.02	31.75	-2.33	
TP3	226.69	195.59	13.72	23.84	20.78	12.82	
Overall Internal			13.62			7.58	

- Separating formulations by excipient group improved the IVIVC
- However, it is still nonlinear in the Distal SI/Colon region for all formulations

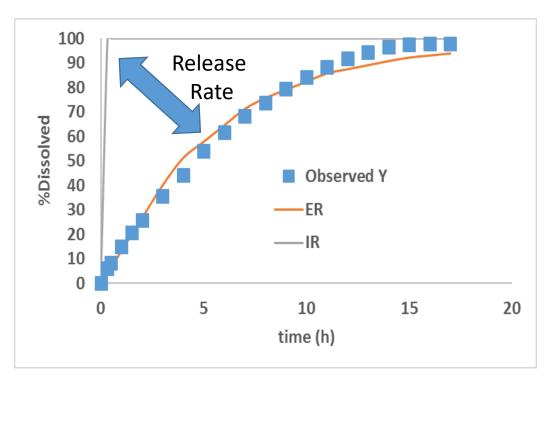

	AUG	Ctlast		Cmax			
Formulation	Obs	Pred	%PE	Obs	Pred1	%PE1	
TP4	201.54	155.91	22.64	14.29	15.31	-7.19	
TP5	325.09	231.99	28.64	23.67	21.39	9.64	
TP6	96.49	78.78	18.35	7.40	8.00	-8.06	
Overall Internal			23.21			8.30	

8

Population PK Data – Exploratory Analysis

VISIT=TP2

VISIT=TP3

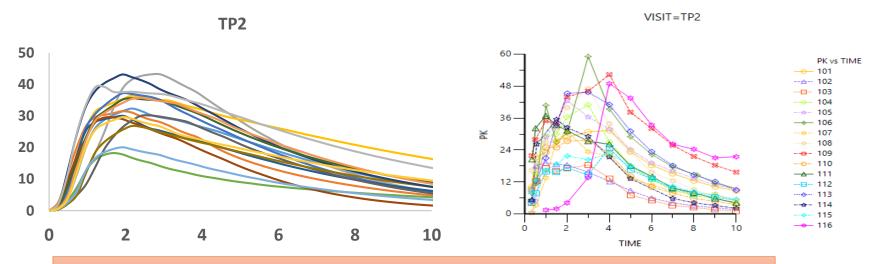


- Fast is not the fastest and Slow is not the slowest in all subjects
- Rank Order of Mean PK is not retained at individual subject levels
 - Inter-individual variability
 - Inter-occasion variability
 - ✓ Formulation aspects
 - ✓ Physiology aspects

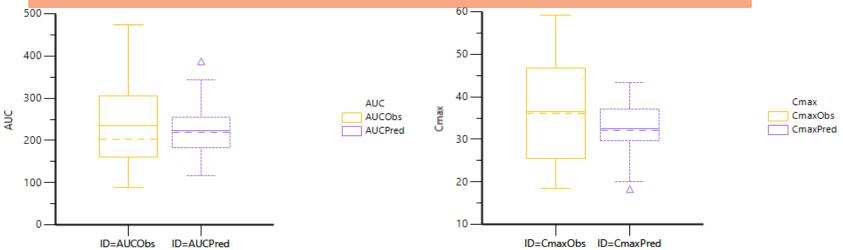
Population IVIVE for CR formulation – A New Approach

Calculate Release Rate from in vitro dissolution profiles with SIVA

Solubility data [DRUG] => Dissolution Data [FORMULATION SPECIFIC]


Deconvoluting release rate from *in vitro* dissolution profile to reconvolute with *in vivo* PBPK model

IVIVE can account for any differences in solubility/ dissolution in vitro and in vivo.


However, currently polymer behaviour *in vivo / in vitro* are not typically modelled mechanistically in PBBM platforms

Virtual BE Between Clinical and IVIVE Simulated Profiles

Assumed 10% CV for in vivo release rate and extent

16 virtual individuals in PBPK vs 16 clinical subjects (i.e., parallel design)

Population IVIVE vs. Mean IVIVC Results

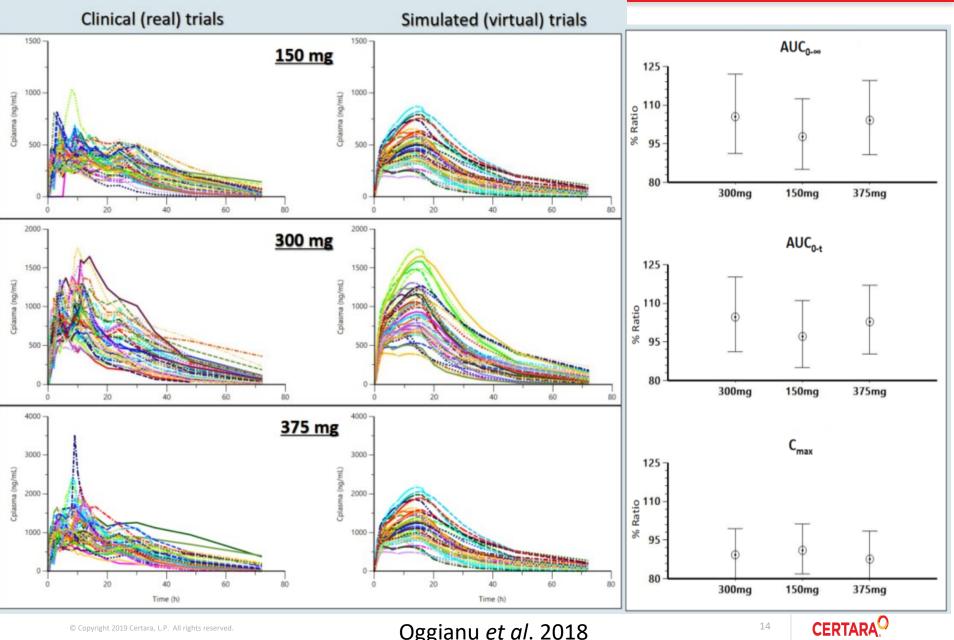
Population IVIVE (n=16, PBPK vs Clinical)

Mean PK data IVIVC

Form ID AUClast		AUClast*		Cmax*				AUCtlast			Cmax		
	Obs	Pred	%PE	Obs	Pred	%PE	Formulation	Obs	Pred	%PE	Obs	Pred1	%PE1
TP2	235.70	222.10	5.77	36.52	32.52	10.95	TP2	241.83	183.53	24.11	31.02	28.54	8.01
TP3	225.36	216.76	3.82	25.51	21.10	17.28	TP3	226.69	171.37	24.41	23.84	18.15	23.86
TP4	198.91	204.09	-2.61	15.25	17.00	-11.45	TP4	201.54	168.29	16.50	14.29	16.13	-12.93
TP5	323.71	311.39	3.81	27.13	26.03	4.05	TP5	325.09	250.48	22.95	23.67	22.50	4.96
TP6	91.76	106.49	-16.05	8.37	9.22	-10.15	TP6	96.49	85.07	11.84	7.40	8.44	-13.99
Overa	all Absolute	e %PE	6.41		· · ·	10.77	Overall Internal			19.96			12.75

* Mean of 16 virtual or real subjects for PBPK and clinical study, respectively

> Investigate formulations *in vitro* under more bio-relevant conditions Develop more mechanistic models of polymer erosion/release


Case 2. Convolution Based IVIVC Approach

- PK profiles exhibited non-smooth PK curves
 - Challenging to estimate/deconvolute *in vivo* dissolution
- A novel convolution based approach was applied

 \checkmark Disposition model was verified with oral solution and IV PK

- ✓ 1:1 IVIVC was assumed *a priori* (*in vitro* dissolution is *in vivo* dissolution)
- ✓ Clinical trial (age, gender, dosage regimen, sampling times) was simulated with *in vitro* dissolution data for ER products
- ✓ BE between simulated and observed PK data was carried out
- ✓ BE indicates that assumption of existence of IVIVC was correct
- ✓ Validation was carried out by %PE

Virtual BE – Simulated vs Clinical PK

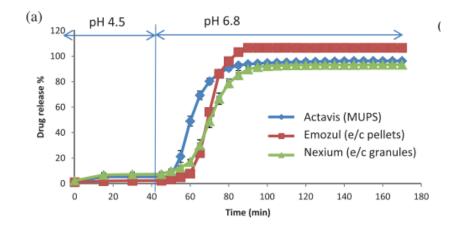
© Copyright 2019 Certara, L.P. All rights reserved

Oggianu et al. 2018

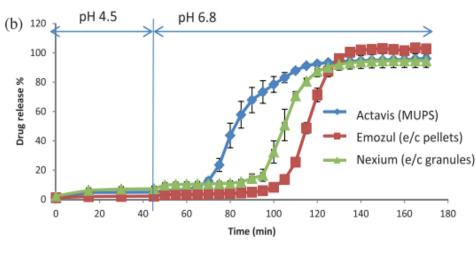
Validation of IVIVC

Decase	PK Parameter	Clinical			Simulated			% Prediction Error (%PE)		
Dosages	and units	Mean	Median	GeoMean	Mean	Median	GeoMean	Mean	Median	GeoMean
300mg	$AUC_{0-\infty}$ (ng/ml*h)	30598.04	27786.18	28447.65	32519.97	31992.85	30018.16	-6.28	-15.14	-5.52
ER	AUC _{0-t} (ng/ml*h)	28777.90	26922.41	27108.70	30554.15	30082.43	28381.19	-6.17	-11.74	-4.69
(N=42)	C _{max} (ng/ml)	1069.32	996.55	1036.29	975.28	915.42	925.48	8.79	8.14	10.69
150mg	$AUC_{0-\infty}(ng/ml^*h)$	16326.32	15417.47	15391.18	16361.54	15996.31	15045.36	-0.22	-3.75	2.25
ER	AUC _{0-t} (ng/ml*h)	15442.02	15266.33	14657.16	15383.26	15041.28	14238.35	0.38	1.47	2.86
(N=44)	C _{max} (ng/ml)	527.62	515.60	510.00	490.14	457.71	464.29	7.10	11.23	8.96
375mg	$AUC_{0-\infty}(ng/ml*h)$	38324.91	36953.94	36124.29	40902.93	39990.36	37612.65	-6.73	-8.22	-4.12
ER	AUC _{0-t} (ng/ml*h)	36286.85	34632.22	34613.12	38457.14	37603.01	35595.05	-5.98	-8.58	-2.84
(N=44)	C _{max} (ng/ml)	1400.94	1280.00	1324.35	1225.36	1144.27	1160.73	12.53	10.60	12.35
Average	$AUC_{0-\infty}$ (ng/ml*h)							<u>4.41</u>	<u>9.04</u>	<u>3.96</u>
absolute	AUC _{0-t} (ng/ml*h)				<u>4.18</u>	<u>7.26</u>	<u>3.46</u>			
% PE	C _{max} (ng/ml)							<u>9.48</u>	<u>9.99</u>	<u>10.67</u>

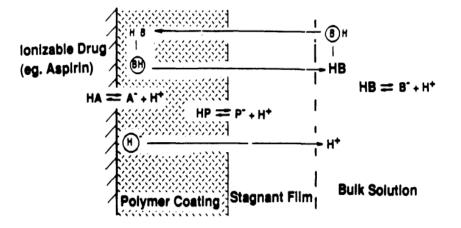
Esomeprazole Formulations


Table 1

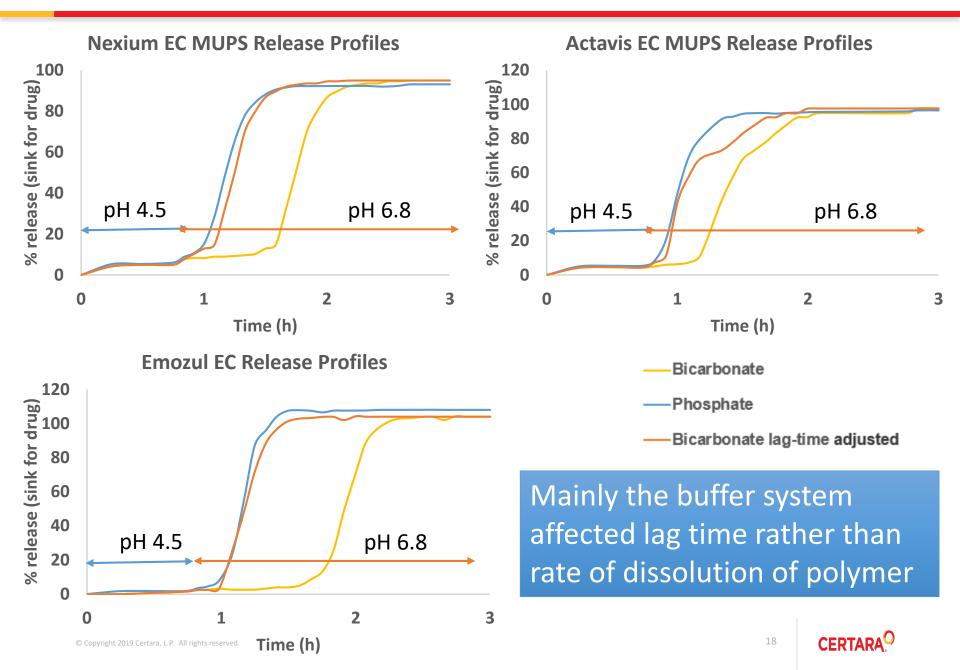
Commercial PPI products included in the study.

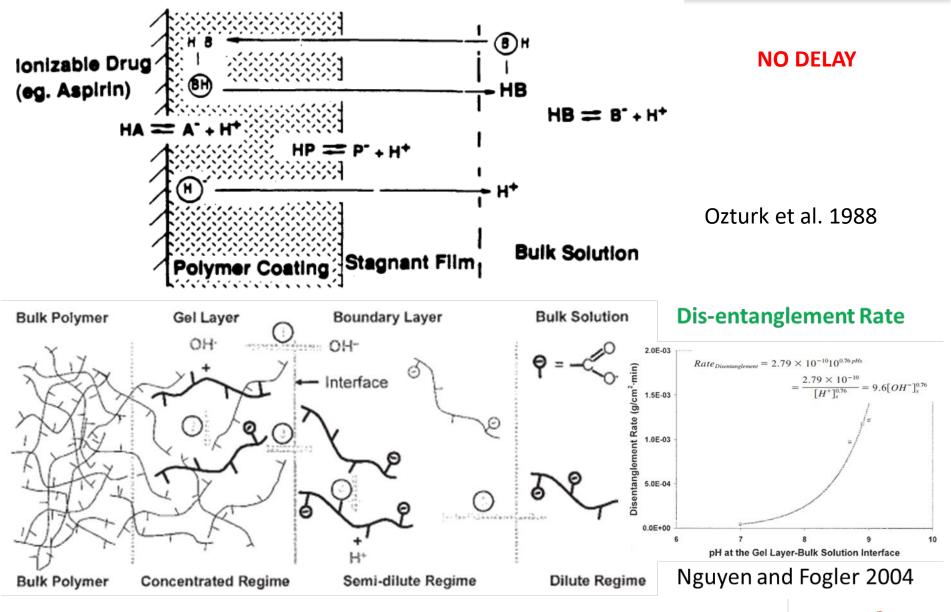

Brand name	Strength	Formulation		Enteric coating		Manufacturer	
Esomepraz	ole						
Nexium	10 mg	Gastro-resistant granules for oral suspe	ension, sachet	Methacrylic acid-ethyl acrylate copolymer (1:1) 30	AstraZeneca		
Emozul	20 mg	Gastro-resistant pellet-enclosed capsule		Methacrylic acid-ethyl acrylate copolymer (1:1) 30% dispersior		Consilient Health Ltd.	
Actavis	20 mg	Dispersible tablet containing gastro-resi tablet ^a)	istant pellets (MUPS	Methacrylic acid-ethyl acrylate copolymer (1:1) 30	Actavis Group PTC		
Fable 2 Particle size (Brand name		iculate products. Formulation	Particle size	2			
			Sieve metho	d, μm (% weight)		Laser diffraction (X ₅₀ (µm)	
Esomepraz	ole						
Emozul		Pellet-enclosed capsule	1400-2000	(100%)	n/a		
Nexium Granules (sachet)		n/a	n/a 6				
Actavis	Actavis MUPS tablet		500-710 (2	500-710 (21%); 355-500 (75.23%); 250-355 (3.77%) 494			
© Copyright 2019 Certara, L.P. All rights reserved.		Liu & Shokrollahi 2015					

Esomeprazole Formulations

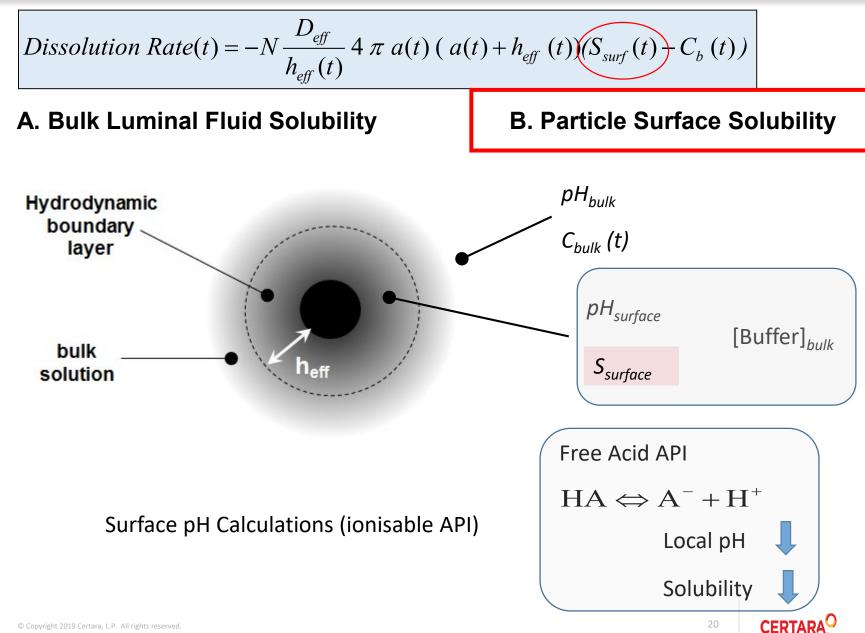

pH 6.8 Phosphate buffer (50mM)

pH 6.8 Bicarbonate buffer (5mM)

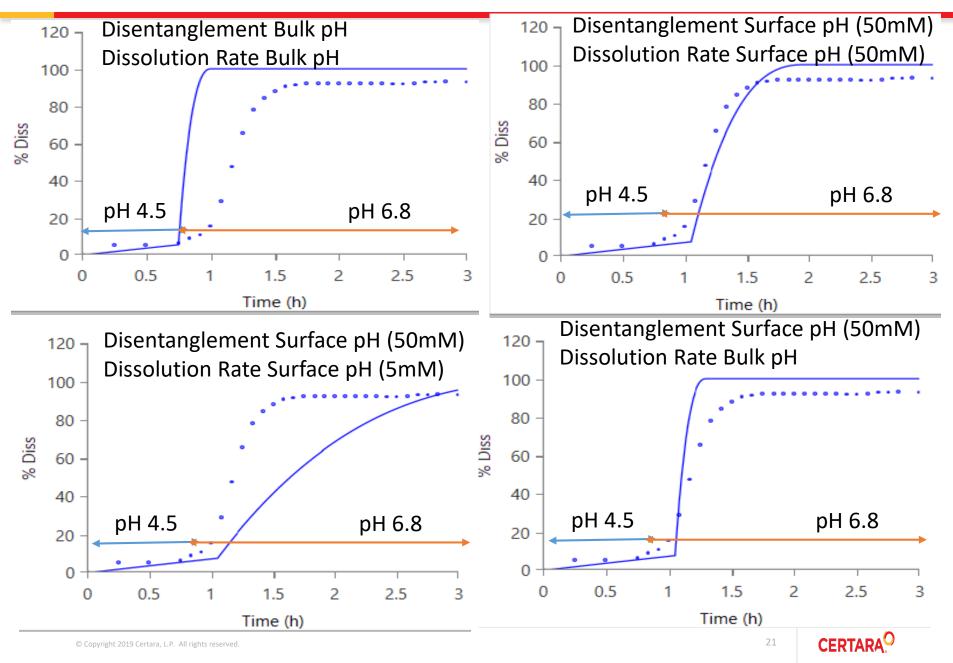

Liu & Shokrollahi 2015


Ozturk et al. 1988

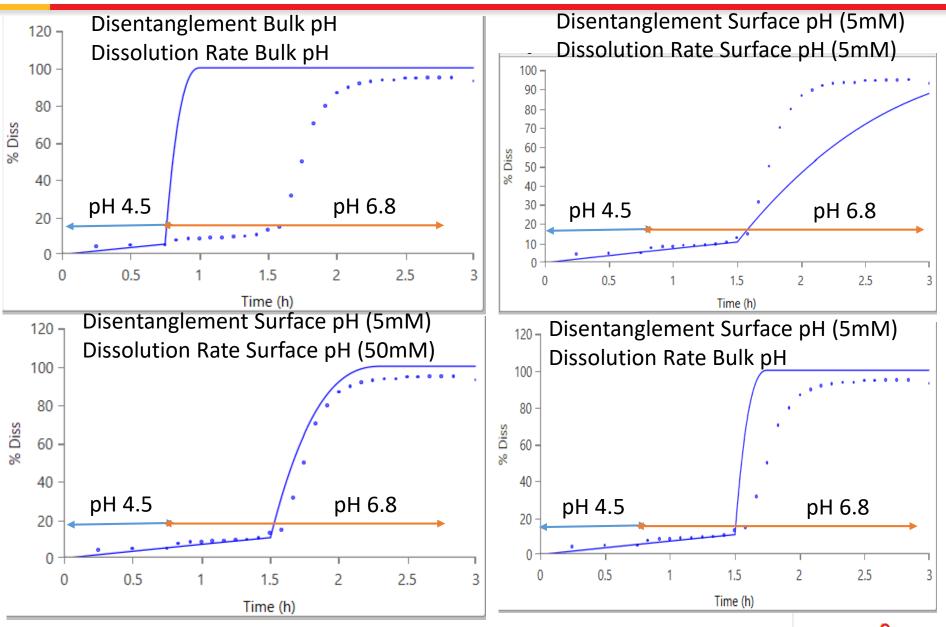
Esomeprazole Formulations



Polymer Erosion/Dissolution – Full Mechanism

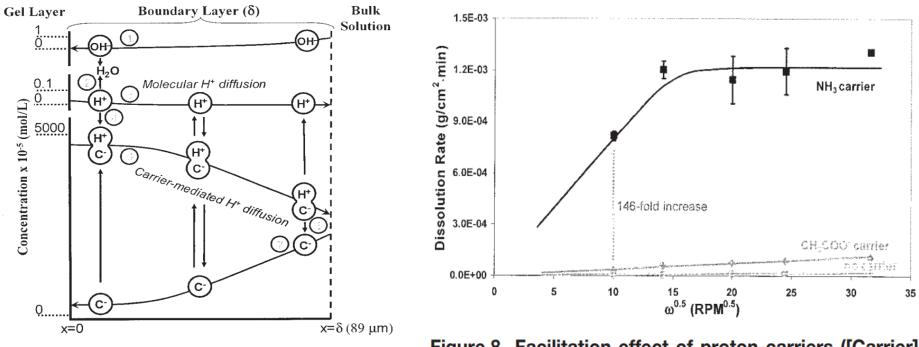


CERTARA


Surface Solubility and Surface pH Model

Nexium EC – Dissolution in Phosphate Buffer (50mM)

Nexium EC – Dissolution in Bicarbonate Buffer (5mM)

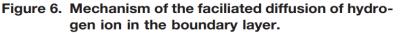


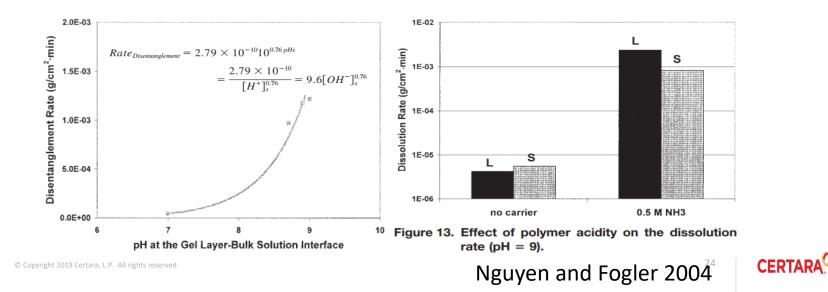
CERTARA

Under-prediction of Dissolution Rate in Bicarbonate Buffer

pH 6.8 mHanks buffer was used (Liu & Shokrollahi 2015)

The mHanks buffer was adapted from Hanks' balanced salt solution composed of 36.9 mM NaCl, 5.37 mM KCl, 0.812 mM MgSO₄7H₂O, 1.26 mM CaCl₂, 0.337 mM Na₂HPO₄2H₂O, 0.441 mM KH₂PO₄, 4.17 mM NaHCO₃. A sufficient quantity of CO₂(g) was purged into the media to reach pH 6.8




Figure 8. Facilitation effect of proton-carriers ([Carrier] = 0.5 mol/L, pH = 9).

Nguyen and Fogler 2004

CERTAR

Findings from the Study

- Surface pH effect on disentanglement of polymer and the thickness of the enteric polymer coat are likely rate limiting steps rather than surface pH on polymer dissolution rate.
- Other proton carriers in the formulations play a role after disentanglement hence the rate of dissolution is almost the same in phosphate and bicarbonate buffers
- AND/OR the thickness of polymer coat is formulation dependent and not correlated with size of granules

Future Directions

- More mechanistic models for polymer erosion, swelling, diffusion and dissolution are needed
- Further understanding on how polymer combinations and interactions with other excipients impact release is needed
- Further research into how the polymers behave in vivo and relevant physiological parameters that contribute to variability
- Formulation simulations can be performed at the population level under a VBE framework to factor in the impact of variability
- More case studies spanning different drug and formulation types and polymer combinations are needed to understand and address the gaps

<u>Simcyp</u>

<u>Lundbeck</u>

Angelini Pharma

Karen Rowland-Yeo	Frank Larsen	Rossella Picollo
David B. Turner	Klaus Gjervig Jensen	Laura Oggianu
Masoud Jamei	Søren Rahn Christensen	Petrucci Vanessa
Siri Chirumamilla	Jens Kateb	

Note: The Simcyp Simulator is freely available, following completion of the relevant workshop, to approved members of academic institutions and other not for -profit organizations for research and teaching purposes.

Questions?

