Successful Prediction of Fetal Exposure to Transported and Non-transported Drugs Using In Vitro Studies and PBPK M&S

Jashvant (Jash) D. Unadkat, Ph.D.
Milo Gibaldi Endowed Professor
Department of Pharmaceutics, School of Pharmacy
University of Washington, Seattle, WA
The Pregnant Woman and Her Fetus are Drug Orphans

Medication use in pregnancy is prevalent

– Up to **80%** of pregnant women take drugs during pregnancy
– **90%** of drugs lack **approval** for use in pregnancy
– Some drugs are administered to pregnant women to treat the fetus (e.g. corticosteroids, HIV drugs)

Fetal/neonatal safety and efficacy of drugs is difficult (or often impossible) to determine, but:

• Fetal/neonatal safety/efficacy is driven by **fetal drug exposure**, which in turn is driven by:
 – Maternal drug exposure
 – Placental transport (often significant) or metabolism (usually negligible)
 – Fetal metabolism (usually negligible)
Assess Fetal Drug Exposure?
Difficult Though Possible

Fetal blood/plasma can be sampled only once and only at term (from umbilical vein, UV or artery - UA)

- Umbilical vein plasma/maternal plasma (UV/MP) drug concentration ratio at term is often incorrectly interpreted as a measure of fetal drug exposure

Correct “relative” Fetal Drug Exposure is: \(K_{p,uu} = \frac{f_{uf} \times AUC_f}{f_{um} \times AUC_m} \)

- \(K_{p,uu} = 1 \) for passively diffusing drugs, but <1 for those that are effluxed; need to also predict fetal Cmax
- can be obtained by pooling term data from multiple maternal-fetal dyads; but impossible < term
- therefore, alternative methods are needed to predict, rather than measure, \(K_{p,uu} \)
Maternal-Fetal PBPK (m-f PBPK) Model to Estimate $K_{p,uu}$

Incorporates changes in all gestational –age dependent physiological parameters including changes in:

- Cardiac output and organ blood flows
- Plasma proteins and plasma protein binding of drugs
- Activity/abundance of drug metabolizing enzymes or transporters including in the placenta

Zhang and Unadkat, 2017 DMD
Successful Prediction of Fetal Exposure to Drugs that Passively Cross the Placenta using our M-F PBPK Model

Model Verification using passive diffusion drugs

- **Theophylline Maternal**
 - Maternal plasma concentration vs. time
 - Ron et al., 1994

- **Fetal**
 - Fetal plasma concentration vs. time
 - 200mg theophylline dosed orally prior to C-section
 - 1A2 substrate

- **Zidovudine Maternal**
 - Maternal plasma concentration vs. time
 - O'Sullivan et al., 1993

- **Zidovudine Fetal**
 - Fetal plasma concentration vs. time
 - Zidovudine was dosed to term women 5 times a day followed by a 1-h IV infusion
 - UGT2B7 substrate

Zhang and Unadkat, 2017 DMD
Expansion of our M-F PBPK to Predict Fetal Exposure to Drugs that are Transported Across the Placenta

The Human Placenta is Richly Endowed with both Efflux and Influx Drug Transporters, the most important being P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP)

Maternal Blood

Syncytiotrophoblast

Fetal Compartment
Placental P-glycoprotein (P-gp) Excludes P-gp Substrates from the Fetus (e.g. 11C-verapamil)

PET – before CsA

PET – during CsA

PET – pixel-by-pixel subtraction of A from B

MRI

Eyal et al., J Nucl. Med, 2009
Chung et al., Br J Pharmacol, 2010
Workflow to Predict Fetal $K_{p,uu}$ of Transported Drugs

Model Transporter: P-gp

P-gp Substrates:
1) Darunavir (DRV)
2) Lopinavir (LPV)
3) Dexamethasone (DEX)
4) Betamethasone (BET)

Prediction of $K_{p,uu}$ from In Vitro Studies

$$K_{p,uu} = \frac{REF \cdot (ER_{-TRQ} - ER_{+TRQ}) + 1}{REF + P-gp \text{ abundance in vitro}}$$

(1) In vitro Transwell
Apical Chamber (A) Basal Chamber (B)

(2) In vivo placenta
Maternal Blood Fetal Blood

Estimation of $K_{p,uu}$ from Observed In Vivo Data

m-1 PBPK Model

Anoshchenko et al., DMD 2021

Observed In Vivo Data

Dots: Paired observed umbilical vein (UV) and maternal plasma (MP) drug concentrations at term. Each pair obtained from a single maternal-fetal dyad
The Abundance of Placental Transporters (pmole/g placenta) Changes with Gestational Age

Anoshchenko L et al., DMD 2020
Successful Prediction of Fetal $K_{p,uu}$ Using the ER-REF Approach and our M-F PBPK Model

P-gp Substrates:
- Dexamethasone (DEX)
- Betamethasone (BET)
- Darunavir (DRV)
- Lopinavir (LPV)

Anoshchenko et al., DMD 2021
Significance of Findings

• This success provides confidence in using the ER-REF approach and PBPK M&S to estimate fetal drug exposure ($K_{p,uu}$, fetal AUC or C_{max}):

 ➢ to other placental P-gp substrate drugs or drugs of other/multiple placental transporters (e.g., BCRP and P-gp)
 ➢ at earlier gestational ages

• Our ER-REF approach and PBPK M&S can now be used to predict fetal exposure to any drug irrespective of whether it passively diffuses across the placenta or is also transported

• Prediction of fetal $K_{p,uu}$ is necessary to inform fetal efficacy and toxicity and optimize drug dosing regimen for pregnant women
Acknowledgement

Unadkat lab contributors
- Faye Zhang
- Marjorie Imperial
- Alice (Ban) Ke
- Gabriela Patilea-Vrana
- Olena Anoshchenko
- Flavia Storelli
- Sara Eyal
- Francisco Chung

Collaborators
- UWPKDAP faculty
- PACTG team
- Ping Zhao (Gates Foundation) and Shrikant Nalini (FDA)
- Masoud Jamei, Gaohua Lu and Janak Wedagedera (SimCYP® Ltd, UK)
- Bhagwat Prasad, Qingcheng Mao, Joanne Wang

Collaborators
- Jeanne Link, David Mankoff and the PET suite team, Dept. of Radiology

Data Generously Supplied By:
- William J. Jusko, SUNY, Buffalo
- Timothy Tracy, University of Kentucky
- Uwe Fuhr, University of Cologne, Cologne, Germany
- Mia Wadelius, Uppsala University, Uppsala, Sweden

Supported by NIH P01 DA032507, P50HD44404, Bill and Melinda Gates Foundation