Ping Zhao, PhD, Integrated Development - Quantitative Sciences

FDA CERSI Fetal Pharmacology and Therapeutics Workshop, Oct, 2021

BILL& MELINDA GATES foundation



Ping Zhao, PhD, Integrated Development - Quantitative Sciences

NIH-BMGF Workshop, Dec 20, 2019

BILL&MELINDA GATES four dation

BILL& MELINDA

GATES four lation



#### Selecting the Right Dose for Pregnant Women Using PBPK

Ping Zhao, PhD, Integrated Development - Quantitative Sciences

MHRA PK Workshop, Jan 24, 2020

BILL&MELINDA GATES foundation



#### Selecting the Right Dose for Pregnant Women Using PBPK

Ping Zhao, PhD, Integrated Development - Quantitative Sciences

FDA CERSI Fetal Pharmacology and Therapeutics Workshop, Oct, 2021

BILL&MELINDA GATES fone dation

Selecting the Right Dose for Pregnant Women Using PBPK

Ping Zhao, PhD, Integrated Development - Quantitative Sciences

NIH-NICHD Webinar, June 18, 2020

## Physiologically-based Pharmacokinetic (PBPK) Modeling



# Why?How?When?

## **Causes of Maternal Mortality Worldwide**



### Medicine intervention targeting some of these causes may reduce maternal mortality globally

## **The Problem**

Citation: CPT Pharmacometrics Syst. Pharmacol. (2020) 9, 547-549; doi:10.1002/psp4.12551

PERSPECTIVE

Pharmacokinetic Characterization to Enable Medicine Use in Pregnancy, the Potential Role of Physiologically-Based Pharmacokinetic Modeling: A Regulatory Perspective

Susan Cole<sup>1</sup>, Paola Coppola<sup>1</sup>, Essam Kerwash<sup>1</sup>, Janet Nooney<sup>1</sup> and Siu Ping Lam<sup>1</sup>

 in 2011 >80% of women in Europe, the Americas, and Australia "used at least one medicinal product during pregnancy"



- UK: Only five prescription medicines specifically licensed "for non-obstetric use in pregnancy"
- USA: Only 22% labels include "human data about pregnancy"

| TASK FORCE ON RESEARCH SPECIFIC TO PREGNANT WOMEN |
|---------------------------------------------------|
| AND LACTATING WOMEN                               |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
|                                                   |
| Report to                                         |
| in port to                                        |
|                                                   |
| Secretary Health and Human Services               |
| Secretary, reality and reality of the             |
|                                                   |
| Congress                                          |
| Congress                                          |
|                                                   |
|                                                   |

2018: https://www.nichd.nih.gov/sites/default/files/201809/PRGLAC\_Report.pdf

Wide use of medicines during pregnancy yet clear dosing instructions are lacking



- Exclusion of pregnant women from trials
- Difficulty of studying pharmacology in pregnant women
- Limited ability to generalize clinical data in pregnant women

## > Off-label drug use during pregnancy is common

## **Dose Selection: An Exposure-based Exercise**



Characterizing PK is critical for dose selection

# **Dose Selection: An Exposure-based Exercise**



# Amoxicillin in pregnant women

• ↓ Drug concentration

Amoxicillin Pharmacokinetics in Pregnant Women: Modeling and Simulations of Dosage Strategies

MA Andrew<sup>1</sup>, TR Easterling<sup>2</sup>, DB Carr<sup>2</sup>, D Shen<sup>3,4</sup>, ML Buchanan<sup>3</sup>, T Rutherford<sup>3</sup>, R Bennett<sup>3</sup>, P Vicini<sup>1</sup> and MF Hebert<sup>2,3</sup>

## **Dose Selection in Pregnant Women**



> Not suitable to address every question through the conduct of clinical PK studies

## Physiologically-based Pharmacokinetic (PBPK) Modeling



# Why?How?When?



### Virtual pregnant women/fetuses enable customized drug dosing in pregnant women

# **Known Changes during Pregnancy**

| Parameter                                        | T <sub>1</sub> <sup>a</sup> | $T_2^a$           | T <sub>3</sub> ª  |
|--------------------------------------------------|-----------------------------|-------------------|-------------------|
| Total body weight (kg)                           | ↑ <mark>6</mark> %          | ↑ 16%             | ↑ 23%             |
| Total fat mass (kg)                              | ↑ 11%                       | ↑ 16%             | ↑ 32%             |
| Total body water (L)                             | ↑ 11%                       | ↑ 27%             | ↑ 41%             |
| Cardiac output (L)                               | ↑ 18%                       | ↑ 28%             | ↑ 33%             |
| Plasma volume (L)                                | ↑ 7%                        | ↑ 42%             | ↑ 50%             |
| Red blood cell volume (L)                        | ↑ 4%                        | ↑ 20%             | ↑ 28%             |
| Hematocrit (%)                                   | ↓ 3%                        | ↓ 8%              | ↓ 14%             |
| Albumin (g/L)                                    | ↓ 5%                        | ↓ 16%             | ↓ 31%             |
| α1-AGP (g/L)                                     | ↓1%                         | ↓ 22%             | ↓ 19%             |
| Glomerular filtration rate (mL/min) <sup>b</sup> | ↑ 19%                       | ↑ 37%             | ↑ 40%             |
| Effective renal plasma flow (L/h)                | ↑ 38%                       | ↑ 48%             | ↑ <b>31%</b>      |
| Creatinine clearance (mL/min)                    | ↑ 28%                       | ↑ 58%             | ↑ 26%             |
| Uterine blood flow (L/h)                         | ↑ 923%                      | ↑ 1,567%          | ↑ 2,771%          |
| Hepatic blood flow (L/h) <sup>c</sup>            | $\leftrightarrow$           | $\leftrightarrow$ | $\leftrightarrow$ |

Pharmacometrics in Pregnancy: An Unmet Need

\*T1, T2, T3: first, second and third trimesters

Alice Ban Ke,<sup>1</sup> Amin Rostami-Hodjegan,<sup>2,3</sup> Ping Zhao,<sup>4</sup> and Jashvant D. Unadkat<sup>5</sup>

Ann Rev Pharmacol Toxicol, 2013

# **Known Changes during Pregnancy**

|                               |                     | Effect on CL/F (%) <sup>a</sup> |                   |                   |                                             |           |
|-------------------------------|---------------------|---------------------------------|-------------------|-------------------|---------------------------------------------|-----------|
| Drug/probe                    | Indication          | T <sub>1</sub>                  | T <sub>2</sub>    | $T_3$             | Metabolizing-<br>enzyme activity<br>changes | Reference |
| Caffeine*                     | CNS stimulant       | ↓ 33                            | ↓ 48              | ↓ 65              | L CYP1A2                                    | 48        |
| Theophylline                  | Asthma              | $\leftrightarrow$               | $\leftrightarrow$ | ↓ 34              | V OIT IIIL                                  | 49        |
| Nicotine                      | Smoking cessation   | NA                              | ↑ 54              | ↑ 54              | ↑ CYP2A6                                    | 50        |
| Phenytoin*,b                  | Epilepsy            | <u>↑</u> 43                     | ↑ 51              | ↑ 61              | ↑ CYP2C9                                    | 51        |
| Proguanil                     | Malaria             | NA                              | ↓ 60              | ↓ 60              | ↓ CYP2C19                                   | 52        |
| Metoprolol*                   | Hypertension        | NA                              | NA                | ↑ <b>4</b> 59     | ↑ CYP2D6                                    | 53        |
| Dextromethorphan <sup>b</sup> | Cough               | <u>↑ 26</u>                     | ↑ 35              | ↑ 48              |                                             | 48        |
| Midazolam*                    | Sedation            | NA                              | NA                | <u>↑ 99</u>       |                                             | 14        |
| Indinavir                     | HIV infection       | NA                              | NA                | <u>↑</u> 277      | ↑ CYP3A4                                    | 8         |
| Glyburide                     | Diabetes            | NA                              | NA                | ↑ 106             |                                             | 9         |
| Methadone                     | Addiction           | NA                              | ↑ 101             | ↑ 65              | ↑ CYP2B6                                    | 54        |
| Labetalol                     | Hypertension        | NA                              | <b>↑ 30</b>       | ↑ 30              | ↑ UGT1A1                                    | 55        |
| Lamotrigine                   | Epilepsy            | ↑ 200                           | ↑ 200             | ↑ 300             | ↑ UGT1A4                                    | 19        |
| Zidovudine <sup>c</sup>       | HIV infection       | NA                              | NA                | $\leftrightarrow$ | $\leftrightarrow$ UGT2B7                    | 56        |
| Amoxicillin                   | Bacterial infection | NA                              | ↑ 23              | ↑ 20              |                                             | 22        |
| Metformin*                    | Diabetes            | ↑ 22                            | ↑ 28              | ↑ 11              | ↑ Renal CL                                  | 20        |
| Digoxin*                      | Cardiac diseases    | NA                              | NA                | ↑ 19              |                                             | 14        |

Pharmacometrics in Pregnancy: An Unmet Need

#### \*T1, T2, T3: first, second and third trimesters

Alice Ban Ke,<sup>1</sup> Amin Rostami-Hodjegan,<sup>2,3</sup> Ping Zhao,<sup>4</sup> and Jashvant D. Unadkat<sup>5</sup>

## **Predict-Learn-Confirm: Enzymes**

Citation: CPT: Pharmacometrics & Systems Pharmacology (2012) 1, e3; doi:10.1038/psp.2012 U2 ASCPT All rights reserved 21638306/12 www.notec.com/sp.

ORIGINAL ARTICLE

A PBPK Model to Predict Disposition of CYP3A-Metabolized Drugs in Pregnant Women: Verification and Discerning the Site of CYP3A Induction

AB Ke<sup>1,2</sup>, SC Nallani<sup>2</sup>, P Zhao<sup>2</sup>, A Rostami-Hodjegan<sup>3,4</sup> and JD Unadkat<sup>3</sup>



Liver CYP3A: 99% ↑ in T3 Learn: midazolam <u>Confirm</u>: nifedipine and indinavir <u>Learn/confirm</u>: induction only in liver, not gut

#### Model describing data in non-pregnant subjects



#### Model describing data in pregnant women



# Why?How?When?



- Design of pregnancy studies (e.g., PK)?
- Off label use in pregnant women?
- Dose recommendation in the labels or description of untested PK scenarios in the label?

## > Intended uses are dependent on level of confidence of the model

# **Verifying Enzyme Changes during Pregnancy**

| Citation: CPT: Pharmacometrics & Systems Pharmacology (2012) 1, e3;<br>© 2012 ASCPT All rights reserved 2163-8306/12 | doi:10.1038/psp.201 |
|----------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                                                                                      |                     |

ORIGINAL ARTICLE

A PBPK Model to Predict Disposition of CYP3A-Metabolized Drugs in Pregnant Women: Verification and Discerning the Site of CYP3A Induction

AB Ke<sup>1,2</sup>, SC Nallani<sup>2</sup>, P Zhao<sup>2</sup>, A Rostami-Hodjegan<sup>3,4</sup> and JD Unadkat<sup>1</sup>







CYP3A: 99% ↑ in T3 <u>Learn</u>: midazolam <u>Confirm</u>: nifedipine and indinavir <u>Learn/confirm</u>: induction only in liver, not gut

CYP1A2: 65% ↓ in T3; CYP2D6: 100-200% ↑ in T3 Learn: caffeine, metoprolol Confirm: theophylline, paroxetine, dextromethorphan, clonidine

CYP2C19, 62-68%  $\downarrow$  inT2-T3; CYP2C9: 50-60%  $\uparrow$  in T2-T3

Learn: in vitro by estradiol, proguanil, phenytoin

Predict: Glyburide (CYP3A, 2C9, 2C19) and methadone (CYP3A, 2B6, 2C19) in T2 and T3

## Fourteen (14) CYP substrates in virtual pregnant population

## **Verifying Transporter Changes during Pregnancy**



## > Three (3) renally cleared, transporter substrates in virtual pregnant population

## Virtual Chinese Pregnancy Population (Peking Univ 3<sup>rd</sup> Hospital)

- → All independent predictions in pregnant and non-pregnant subjects
- → Future direction: renal transporter changes



### Six (6) renally cleared drugs in virtual Caucasians and Chinese Pregnant Populations

## **Verifying Fetal Model**

1521-009X/45/8/939-946\$25.00 Deuc METAROLISM AND DISPOSITION Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics https://doi.org/10.1124/dmd.116.073957 Drug Metab Dispos 45:939–946, August 2017

Development of a Novel Maternal-Fetal Physiologically Based Pharmacokinetic Model II: Verification of the Model for Passive Placental Permeability Drugs<sup>S</sup>

Zufei Zhang and Jashvant D. Unadkat



Three (3) passive diffusion drugs in virtual Maternal-fetal (m-f) PBPK models

## **Expanding Maternal-Fetal Model (Univ Wash)**

 Determine placenta transporter abundance

Update m-f model

Verify and apply m-f model

| ena Anoshch                                                                                                        | enko, Bhagwat                                                            | Prasad, Naveen K. Neradugomma, Joanne Wang, Qingcheng Mao,<br>and OJashvant D. Unadkat                                                                       |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                    | Department of                                                            | Pharmaceutics, University of Washington, Seattle, Washington                                                                                                 |
|                                                                                                                    |                                                                          | Heceived April 7, 2020; accepted June 11, 2020                                                                                                               |
|                                                                                                                    | Revised: 31 May 2021                                                     | Accepted: 7 June 2021                                                                                                                                        |
| leceived: 11 May 2021                                                                                              |                                                                          |                                                                                                                                                              |
| Received: 11 May 2021<br>DDI: 10.1002/psp4.12674<br>ARTICLE                                                        | na fatal ave                                                             | source to the D on substantics, continuational                                                                                                               |
| Received: 11 May 2021<br>DDI: 10.3002/pape-12674<br>ARTICLE<br>Estimatin<br>by PBPK<br>distress sy<br>Olena Anosho | g fetal exp<br>modeling<br>yndrome<br><sup>henko<sup>1</sup>   Mar</sup> | osure to the P-gp substrates, corticosteroids,<br>to inform prevention of neonatal respiratory<br>k A. Milad <sup>2</sup>   Jashvant D. Unadkat <sup>4</sup> |
| Received: 11 May 2021<br>DDI: 10.1002/pope.1267/<br>ARTICLE<br>Estimatin<br>by PBPK<br>distress sy<br>Olena Anosho | ng fetal exp<br>modeling<br>yndrome<br>henko <sup>1</sup>   Mar          | osure to the P-gp substrates, corticosteroids,<br>to inform prevention of neonatal respiratory<br>k A. Milad <sup>2</sup>   Jashvant D. Unadkat <sup>4</sup> |

Prediction of K<sub>p.uu</sub> from In Vitro Studies



## > Four (4) P-gp substrates in virtual m-f PBPK models

## **International PBPK Collaborations**

| Projects                                    | Collaborators                                              |
|---------------------------------------------|------------------------------------------------------------|
| M-f PBPK                                    | University of Washington                                   |
| Chinese Pregnancy Population                | Peking University 3 <sup>rd</sup> Hospital                 |
| Model Informed Drug Use during<br>Pregnancy | Radboud University                                         |
| Repository and Training                     | UK Medical and Health products<br>Regulatory Agency (MHRA) |



- Informed off label use
- > Quality digital evidence



## **Workshop objectives**

- 1. Review general regulatory and ethical considerations for fetal pharmacology and therapeutics
- Describe methods to assess clinical and nonclinical safety and efficacy assessments to support clinical trials of drugs in pregnancy and the fetus
- 3. Highlight advances and existing knowledge in fetal therapeutics
- 4. Discuss key aspects of maternal-fetal modeling and simulation