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PBPK modeling approaches

Bottom-up ¢ middle-out ¢ top-down

Bottom-up approach:

* Mechanism-driven model

 IVIVE

« Clinical PK data not used for model development

Top-down approach:

« Empirical model, data-driven

* Model structure/parameterization informed by clinical PK data
Middle-out approach:

« Combination of the other two approaches

» Reverse translation & forward projection

JE: Top-down

Plasma conc [pg/L]

Time [h] Time (h]

Bottom-up
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The value of PBPK modeling

PBPK models facilitate mechanistic understanding and extrapolation to new scenarios
« “PBPK-thinking” involves a mechanistic understanding of
pharmacokinetic processes

* |f the confidence in a model to simulate observations in a
specific system is sufficiently high, it can be used for:

« Identification of parameters critical for a specific PK

be h aV| or g -Disease Level oy
(Develop and Evaluate) -Mechanism Level Generation of New
Utiize Established and [/ Akttt WA  Experimental and
 Establishing an in vitro—in vivo link between in vitro el thilecoct
dissolution and in vivo absorption rarnemEEty G / e
Knowlgdg\e L ‘ Inference :
« Translation to a new scenario (“set of conditions”), “Gonent Bestinode! QIR and Decision Making.
e.g. prediction of in vivo exposure of different oral N Wit /
dosage forms simulation and Brefiction

Marshall et al. 2016. doi: 10.1002/psp4.12049
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“ Workflow for PBBM model development
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9 Workflow for PBBM model development
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) Establishment of a dissolution model

Multiple models can be used to describe a dissolution profile

Zero order model e.g. for matrix tablets with poorly 0.50

soluble drugs, coated forms, osmotic

systems

i 8 0.20

Weibull model empirical model useful for various S

types of formulations é 0.10
Higuchi model e.g. for matrix tablets with water %

soluble drugs i 005
Johnson model adapted Noyes-Whitney function

useful for e.g. poorly soluble drugs 0.02

with polydisperse particle size

distributions 0.01

Time [h]
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= Establishment of a dissolution model

R

Recommendations for structural model selection

 Understand the science:

« E.g. is there evidence for precipitation?

« Are there factors affecting dissolution that are unaccounted for, such as surfactants?

« Explore different structural models

* Preferably use a mechanistic model - facilitate translation to the in vivo situation

» Avoid empirical functions to describe dissolution kinetics (e.g. Weibull)
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= Establishment of a dissolution model

Example of dissolution data and inferred model
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Establishment of a dissolution model

Example of dissolution data and inferred model

Structural model:
« Johnson model (Noyes-Whitney) for polydisperse particles

» Log-linear relationship between SDS concentration in medium and the drug’s saturation concentration was
integrated in the Johnson model

Parameter optimization:

» All data were used (dissolution in all biorelevant media) = poorly fitted data can trigger revision of mechanistic
understanding and underlying model structure

Optimized parameters:
« Aqueous diffusion coefficient
« Thermodynamic solubility in each medium (intercept)

« SDS-effect on solubility (slope)
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Establishment of a dissolution model

Visual assessment of the consistency between data and structural model/error model

Concentration-time profiles
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Simulated vs. observed
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Establishment of a dissolution model

Non-identifiable parameters and high uncertainty pose a risk to model translation

Optimization range of
parameter 1

Optimization range of
parameter 2

SRR
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I
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.,ftz_
Global
minimum

95% Confidence interval

Identification Parameter 95% Confidence Interval

Aqueous diffusion coefficient 4.33E-6 + 3.99E-7 [dm2/min]
Solubility 1.85 + 0.24 [mg/l]

SDS-effect on solubility 0.79 + 0.08

Mo i

Correlation between uncertainties in parameter estimates
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= Establishment of a dissolution model

Recommendations for parameter optimization of dissolution models

« Visually inspect consistency between data and model, e.g. through:

« Concentration-time profiles * Residuals vs. simulation
« Goodness-of-fit plots « Histogram of residuals
* Residuals vs. time * Quantiles vs. quantiles

« Evaluate non-identifiability issues, imprecise parameter estimates and strong correlations between
optimized parameters

» Take measures to avoid local minima, e.g.:
» If the optimized parameter value is close to the upper or lower bound, modify the bound and
repeat the optimization
* Randomize start values of optimized parameters
* Instead of a greedy algorithm, use a more robust optimization algorithm (e.g. MCMC, simulated-
annealing)
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“ Workflow for PBBM model development
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Establishment of a PBPK model

Example of PBPK model optimization

Structural model:

* Whole-body PBPK model for a CYP3A-metabolized drug
with minimal renal excretion

Parameter optimization:

» Testing of different models for partition coefficients

Optimized parameters:

« CYP3ACL, GFR fraction and lipophilicity fitted to 1V data
- thereafter fixed in oral PBPK model

Plasma conc [pg/L]

0.01+

O CIHD
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«=  Establishment of a PBPK model

Visual assessment of the consistency between data and structural model/error model

Concentration-time profiles (log scale) Concentration-time profiles (linear, zoom in)
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« Additional visual inspections can provide more insight in model performance (e.g. goodness-of-fit plots, residuals
vs. time, ...)

* Relevant PK parameters (e.g. AUC, C,,,,) should be calculated from the simulation and compared to the observed
values

 ldentifiability issues should be evaluated

- Selection of a “final” PBPK model has to integrate all the factors above
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«=  Establishment of a PBPK model

Bayesian approach to parameter identification

Bayesian statistics in a nutshell

« Combine prior knowledge with experimental data:

prior likelihood

A

P(6|D) < P(0)-P(D|6)
\_Y_}
posterior

« Parameters are random variables with a ,true”

distribution
Prior Study Posterior
information  data knowledge

x ><'
><><
x
x
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Hierarchical models enable the separation of variability
and uncertainty

Individual uncertainty
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«=  Establishment of a PBPK model

Recommendations for parameter optimization of PBPK models

» If possible, separate absorption from disposition procceses by consecutively developing a
IV and oral PBPK model 1

« Assess whether parameter estimates are physiologically plausible

» Visually inspect consistency between data and model (e.g. through concentration-time profiles,
goodness-of-fit plots, residuals vs. time, ...)

« Compare relevant observed PK parameters with simulated PK parameters

« Evaluate non-identifiability issues, imprecise parameter estimates and strong correlations between
optimized parameters

« Take measures to avoid local minima, e.g.:
» If the optimized parameter value is close to the upper or lower bound, modify the bound and
repeat the optimization
 Randomize start values of optimized parameters
* Use a robust optimization algorithm (e.g. MCMC, simulated annealing)

Preferably use Bayesian hierarchical model
[1] Kuepfer, L. et al. 2016. doi: 10.1002/psp4.12134
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9 Workflow for PBBM model development
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“¢ Coupling of dissolution and PBPK model

Propagation of parameter uncertainty to PBBM model output can be evaluated through sensitivity analyses

. C_max of Organism|Peri-pheraIVenousBIood|C1|PIa-srT

10 C1-Solubility at reference pH { ]
C1-Fraction unbound (plasma, reference value) { ]
_ C1-Lipophilicity {
<g C1-Aqueous diffusion coefficient { ]
§ 1
£ 1 0 @PK-
o . AUC_tEnd of Organism|PeripheralVenousBlood|C1|Pl:
© C1-Lipophilicity [ [ [ [ { ] -
0.1 C1-Fraction unbound (plasma, reference value) @
C1-Solubility at reference pH ]
Fat-Volume @
0 10 20 30 40 50 60 70 80 90 100 110 120
Time [h] @PK- -2 -1 0 1 MPK-
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“r)  Coupling of dissolution and PBPK model

Recommendations for sensitivity analysis

« Conducted a sensitivity analysis using the “final” PBBM model application to assess how parameter
uncertainty is propagated

« All optimized parameters should also be considered in the sensitivity analysis
« Parameter value ranges in the sensitivity analysis should reflect the uncertainty
« Give an interpretation of the sensitivity analysis results

« Conduct a worst case analysis
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Conclusion

» ldentifiability issues are critical because they can undermine mechanistic understanding and hinder translatability of
the model to new scenarios

« Sensitivity analysis can be used to evaluate how parameter uncertainty is propagated to the PBBM model output

» Integration of Bayesian statistics into PBPK applications allows separate assessment of inter-individual variability
and parameter uncertainty on simulated PK

« Despite multiple publications on Best Practices for PBPK modeling[-3, no consensus has emerged yet
« Agreement and adoption of reference standards across stakeholders would be desirable

« The open science platform Open-Systems-Pharmacology (OSP) links different stakeholders and facilitates pre-
competitive and transparent exchange, peer-review and qualification of models (http://www.open-systems-
pharmacology.org/)

[1] Zhao, P. et al. 2012. doi: 10.1038/clpt.2012.68 [4] Marshall et al. 2016. doi: 10.1002/psp4.12049
[2] Shepard et al. 2015. doi: 10.1002/psp4.30 [5] Shebley, M. et al. 2018. doi: 10.1002/cpt.1013
[3] Kuepfer, L. et al. 2016. doi: 10.1002/psp4.12134
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