Quantifying placental drug transfer with \textit{ex vivo} cotyledon perfusion assays as PBPK input

Fetal Pharmacology & Therapeutics Workshop, 21st and 22nd of October 2021

Rick Greupink, PharmD PhD
Department of Pharmacology and Toxicology
Radboud university medical center
Nijmegen, The Netherlands
Contributing Team

Pharmacology & Toxicology
Dr. Jolien Freriksen, PhD
Dr. Stein Schalkwijk, PharmD PhD
Dr. Gaby Eliesen, PhD

Hedwig van Hove, PhD-student
Joyce van der Heijden, PhD-student
Charlotte Koldeweij, PhD-student

Jeanne Pertijs, research technician
Petra van den Broek, research technician

Prof. dr. Frans Russel, PharmD PhD
Prof. dr. Saskia de Wildt, MD PhD

Obstetrics & Gynaecology
Joris van Drongelen, MD PhD

Clinical Pharmacy
Prof. dr. David Burger, PharmD PhD
Dr. Angela Colbers, PhD

Certara/Simcyp
Dr. Khaled Abduljalil, PhD

University of Manchester
Prof. dr. Amin Rostami, PhD
Dr. Zubida Al-Majdoub, PhD
Isolated human cotyledon perfusion

Ex vivo dual perfusion of an isolated cotyledon of human placenta: History and future challenges

Henning Schneider, Paul Brownbill, Christiane Albrecht

* Department of Obstetrics and Gynecology, University Hospital, University of Bern, Bern, Switzerland
* Maternal and Child Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, UK
* St. Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
* Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
* Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Switzerland

12th European Placenta Perfusion Workshop (EPPW), 2019, Nijmegen
The placenta

http://www.adameducation.com
Histology

Tissue section of villous material from human placenta

FBV: fetal blood vessel
MBS: Maternal blood space
ST: Syncytiotrophoblast layer

Brown staining: P-gp expression

Predicting fetal drug exposure

Determinants of fetal exposure

Maternal pharmacokinetics

- Gastric pH
- Gastric emptying and intestinal motility
- Total body water
- Plasma volume
- Total body fat
- Albumin concentration
- Cardiac output
- CYP2D6 activity
- CYP3A4 activity
- Glomerular filtration rate

Modified from Colbers et al.
Predicting fetal drug exposure

Determinants of fetal exposure

- Maternal pharmacokinetics
- Placental passage
Predicting fetal drug exposure

Determinants of fetal exposure

Maternal pharmacokinetics

Fetal drug clearance

Placental passage
Around 1.4 million HIV-infected women give birth every year.

Antiretroviral therapy reduces HIV transmission chance to <2%.

Assessment of Maternal and Fetal Dolutegravir Exposure by Integrating Ex Vivo Placental Perfusion Data and Physiologically-Based Pharmacokinetic Modeling

Jolien J M Freriksen, Stein Schalkwijk, Angela P Colbers, Khaled Abduljalil, Frans G M Russel, David M Burger, Rick Greupink
Stepwise approach

1. **Maternal exposure** to dolutegravir during pregnancy

 - Simulate maternal plasma concentrations via PBPK modelling (Simcyp / Berkeley Madonna)

2. **Fetal exposure** to dolutegravir

 - Perform *ex vivo* placental perfusion experiments (term placenta)
 - Incorporate transport data into p-PBPK model and simulate fetal plasma concentrations

Stepwise approach

Drug-specific parameters: pKa, logP, fu, B/P, etc.
Clinical PK parameters: F, ka
Physiological parameters: tissue volumes, blood flow, etc.

Healthy volunteer PBPK model

Model validation

Ex vivo placental perfusion model

Determination of CLcot

Transplacental transfer parameters

Modification of physiological parameters:
- body weight, cardiac output, plasma proteins, etc.

Fetal physiological parameters:
- fetal cardiac output, plasma proteins, etc.

Observed PK profile

Pregnant woman + fetoplacental unit PBPK model

Observed PK profile

Model validation

Create a PBPK model for non-pregnant women

Simulated vs Clinical PK (non-pregnant)

Create a pregnancy-PBPK model
Isolated human cotyledon perfusion

Isolated human cotyledon perfusion
Clearance values (mean ± SD):

1.03 ± 0.06 mL/min
1.03 ± 0.23 mL/min

- Clearance was then corrected for protein binding in maternal and fetal perfusates
- Clearance was scaled from 1 perfused cotelydon to whole placenta
- Used for parameterization of the p-PBPK model

Predicted maternal and fetal exposures

Concentration-time profile following multiple dosing in pregnant women

- Simulated: 0.57 – 1.51
- Observed: 0.64 – 1.81

Conclusion

- The human cotyledon perfusion technique can be used to generate *ex vivo* placental transfer data in the term/3rd trimester placenta.

- The data can be successfully used for parameterization of pregnancy PBPK models.

- The model allows for an integrated assessment of passive and active transport in both directions across the placental barrier.

- Human system in which all placental celltypes are present in their physiological context.

- *In vitro-to-in vivo* scaling is straightforward (based on cotyledon weight or cotelydon number).

- Allows for assessment of interindividual variation in placental transfer / perform studies in placentas obtained from patients with specific morbidities.
Thank you for your attention!

Funding:
Certara/Simcyp
Bill & Melinda Gates Foundation