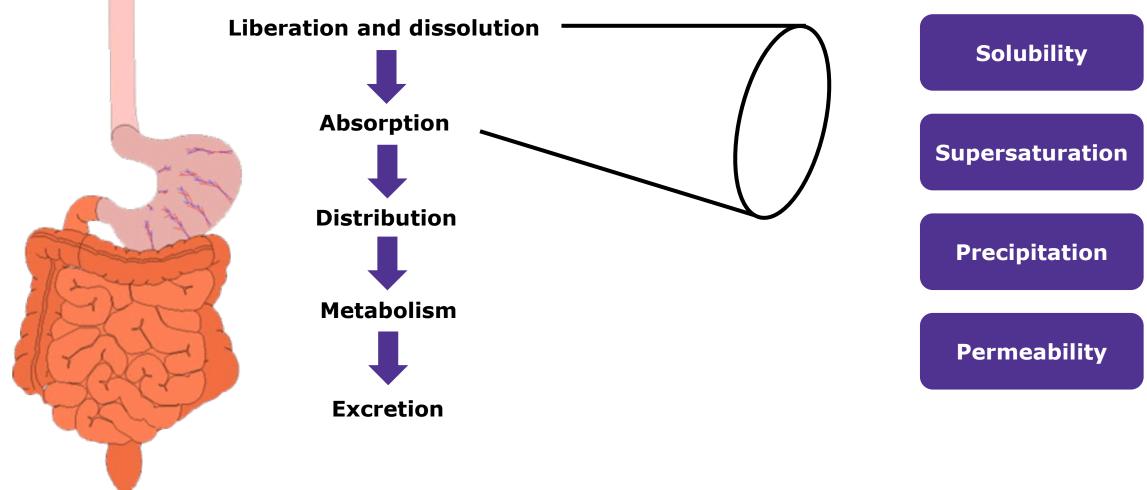
The biopharma business of Merck KGaA, Darmstadt, Germany operates as EMD Serono in the U.S. and Canada.

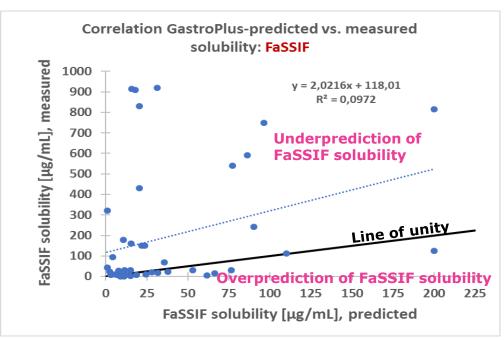
Best practices in model development: input of solubility, supersaturation, precipitation and permeability

Current state and future expectations of Translational Modeling strategies to support drug product development, manufacturing changes and controls

Christian Wagner


CoE Biopharmaceutics | PharmTech | Chemical and Pharmaceutical Development | Merck KGaA


September 23 - 25, 2019 College Park, MD, USA



Solubility

Best practice: Solubility **Case example 1: Predicted vs. observed solubility**

ວp | September

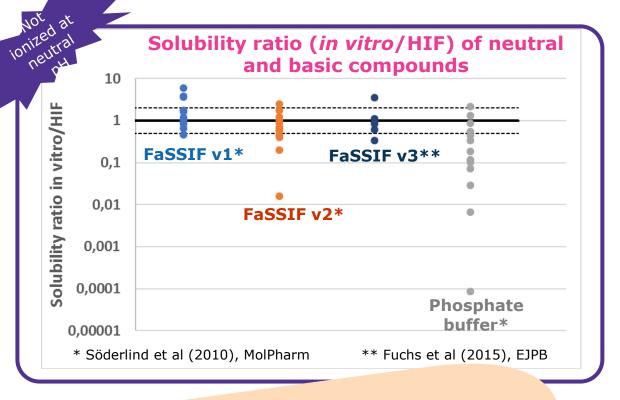
Software-predicted* vs. measured FaSSIF/FeSSIF solubility 46 EMD compounds (LO thru Ph3) Mainly weak bases **Correlation GastroPlus-predicted vs. measured** solubility: FeSSIF **Underprediction of** FaSSIF solubility [µg/mL], measured 1000 1,9047x + 479,65 **FeSSIF** solubility 900 $R^2 = 0.0472$ 800 Line of unity 700 600 500 400 **Overprediction of** 300 **FeSSIF** solubility 200 100 300 400 500 600 700 800 900 100 200 FaSSIF solubility [µg/mL], predicted Poor correlation \rightarrow

Solubility

Conclusion

Software tends to underpredict actual FaSSIF/FeSSIF solubility

Use measured solubility as early as possible


	FaSSIF	FeSSIF
Within 2-fold	33%	9%
Within 5-fold	24%	26%
Outside 5-fold	43%	65%
2019		

between predicted and measured biorelevant solubility

<u>ю</u> GastroPlus

Best practice: Solubility

Conclusion

Based on literature data, FaSSIF v1 seems to be most predictive for *in vivo* solubility in HIF. For FaSSIF v3, the basis of data is even smaller.

op | September, 2019

	E-COTE1	E-COTE2	F-COTE2	Dhambata
		FaSSIF v2	Fassif V3	Pnospnate
N_{total}	13	13	6	13
N_{basic}	5	5	2	5
N _{neutral}	8	8	4	8

In vitro within 2-fold of observed

Solubility

	FaSSIF v1	FaSSIF v2	FaSSIF v3	Phosphate
N _{total}	8/13	7/13	4/6	3/13
	(62%)	(54%)	(66%)	(23%)
N_{basic}	3/5	1/5	1/2	0/5
	(60%)	(20%)	(50%)!	(0%)
N _{neutral}	5/8	6/8	3/4	3/8
	(63%)	(75%)	(75%)!	(38%)

FaSSIF v1: Slight trend for over-prediction

FaSSIF v2: Slight trend for under-prediction

FaSSIF v3: Seems ok (but many outliers of FaSSIF v1 and v2 not included in FaSSIF v3 analysis)

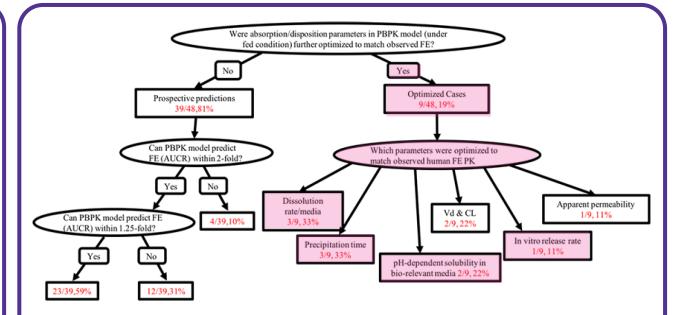
Phosphate: Pronounced under-prediction

Solubility Supersaturation/precipitation Permeability

Best practice: Solubility Case example 3: "Literature says"*

REVIEW

Predictive Performance of Physiologically Based Pharmacokinetic Models for the Effect of Food on Oral Drug Absorption: Current Status


Mengyao Li^{1,2*}, Ping Zhao^{1,3}, Yuzhuo Pan⁴ and Christian Wagner^{1,5}

CPT Pharmacometrics Syst. Pharmacol. (2017) 00, 00; doi:10.1002/psp4.12260; published online on 0 Month 2017.

- 15 peer-reviewed publications and 2 FDA reviews
- 27 compounds (22 basic; 2 acidic; 2 ampholytes; 1 neutral) with 48 food effect simulations
- 63% poorly soluble, 15% highly soluble, 22% n.a.
- Fa < 50% in approximately 50% of cases
- 81%: Prospective simulations; 19% optimized fed parameters

Conclusion

Evidence for dis-connect between *in vitro* and *in vivo* solubility. Physiology in PBPK tools needs improvement.

- Fitted parameters if fed simulation did not fit to observed data: Dissolution/release rate, precipitation parameters, solubility.
- "Input parameters for both absorption and disposition models could be obtained from various sources, reflecting a lack of standardization and large variability in the quality of input data."
- Physiology not always reflected well in PBPK software tools, leading to mis-prediction of site-specific solubility (fed gastric physiology; dynamic decrease of pH over time in fed stomach; liquid volumes in colon)

nop | September, 201

Best practice: Solubility Case example 4: Ion-effect

EMD compound X shows ion-effect, with significantly impaired solubility in the presence of physiological chloride concentration.

-	Solubility of compound A [mg/mL]	
рН	Without Cl-	With 100 mM Cl-
1.1	~ 1	~ 0.01
4.5	~ 0.7	~ 0.007
6.8	~ 0.04	~ 0.004

Use PBBM to 1) set specs for PSD and 2) de-risk BE study. But: Which solubility input to use?

What is the impact on simulations... Compound X: AUC/dose vs. dose 60 50 40 AUC/dose 20 10 0 Ω 200 400 800 1000 1200 1400 Dose [mg]

... and decision-making?

BCS class 4

Solubility

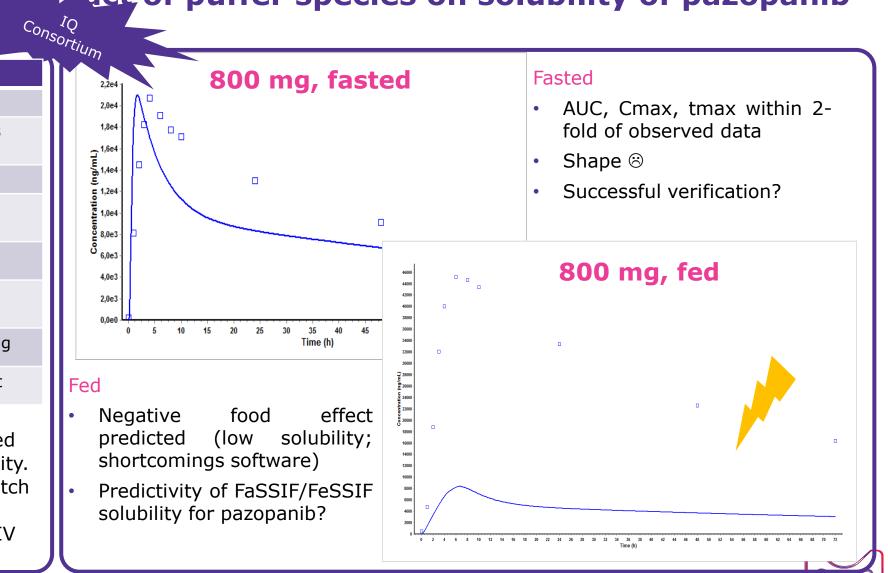
 Ion effect considered: BE correctly predicted, formulation development de-risking successful

Ion effect not considered:

Overprediction of absorption, successful BE prediction jeopardized

Conclusion

Test if compound shows ion effect. If so: Take effect into account, especially if the compound is poorly soluble. Experience for comparably **highly soluble compounds** (BCS 1; DCS 1/2a): **No pronounced impact** if ion effect is reflected in solubility input (D/S ratio reasonably low even in presence of counter ions).


Best practice: Solubility

Case example **Standard** of puffer species on solubility of pazopanib

Pazopanib	
рКа	~ 2 (b); ~ 6 (b)
Solubility [µg/mL]	~ 1 (FaSSIF), ~ 3 (FeSSIF)
Permeability	High (Caco2)
Question	FIH: Absorption limitations?
BA (fasted)	~ 25%
Absorption	Dose-dependent; impaired (fasted)
Food effect	~ 2-fold @ 800 mg
Question	Predict food effect

Modeling strategy

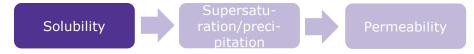
- Absorption model: Measured solubility; Caco2 permeability.
 Fit precipitation time to match PK from SAD.
- Post-absorptive DD: From IV data

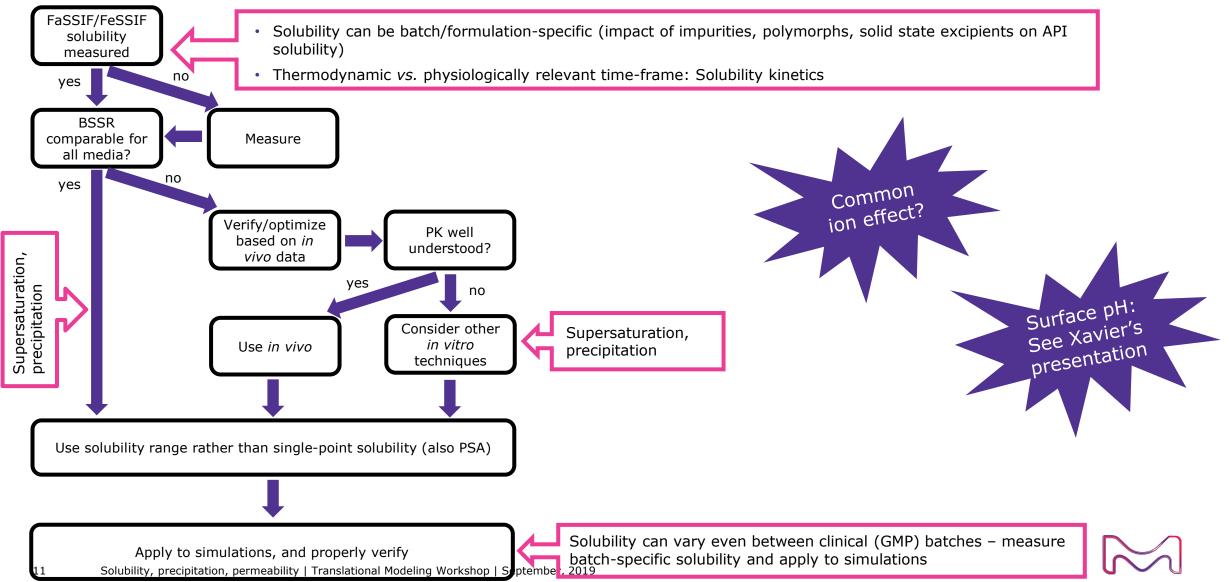
Solubility

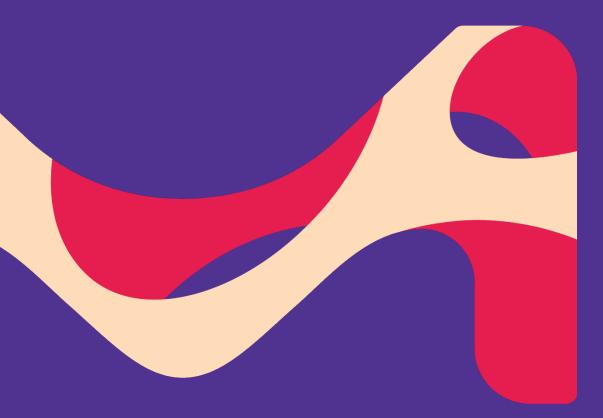
Solubility, precipitation, permeability | Translational Modeling Workshop | September, 2019

Best practice: Solubility

Case example 5: Impact of puffer species on solubility of pazopanib


Transfer model and the use of a more biorelevant bicarbonate buffer*,**




., McConnell et al (2008) IntJPharm]

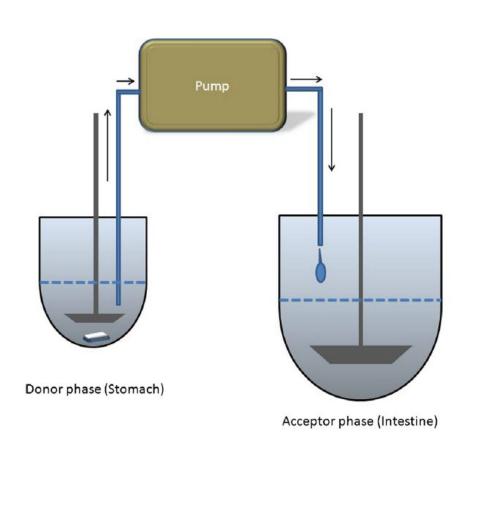
** Jede et al (2019) MolPharm

Best practice: Solubility Summary

Supersaturation and Precipitation

Solubility Supersaturation/precipitation Best practice: Supersaturation and precipitation Methods to predict precipitation See Ed's presentation for presentation for presentation In vitro assays See Ed's presentation for more details • Dumping experiments [Kambayashi et al (2016) EJPB; Jakubiak et al (2015) MolPharm] • Two-compartmental transfer model [Kostewicz et al (2004), JPharmPharmacol]] and variations thereof [e.g., Jede et al (2018), JPharmPharmacol] • Multi-compartmental models, also accounting for drug absorption [e.g., Gu et al (2005), JPharmSci; Psachoulias et al (2012)

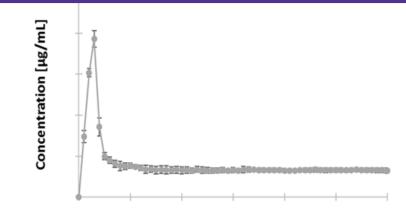
In silico approaches


• Approaches based on classical nucleation and crystal growth theory [e.g., Carlert et al (2010) PharmRes]

Bi-phasic precipitation experiments [e.g., Tsume et al (2018) JPharmSci]

PharmRes; Kourentas et al (2016) EJPharmSci]

TNO model (TIM-1, TIM-2)


Best practice: Supersaturation and precipitation Reminder: Transfer model

 Example for precipitation setup which does not take absorption into account

Supersaturation/precipitation

- Two-compartmental model, based on USP 2 apparatus [Kostewicz et al (2004), JPharPharmacol], or mini-scale [Jede et al (2018), JPharPharmacol] for preformulation application
- Simulated stomach (donor), containing SGF (or versions thereof)
- Simulated intestine (acceptor), containing FaSSIF (or versions thereof)
- Transfer of API solution/suspension from "stomach" to "small intestine" via pump, and measurement of concentration of dissolved drug in acceptor compartment

Best practice: Supersaturation and precipitation

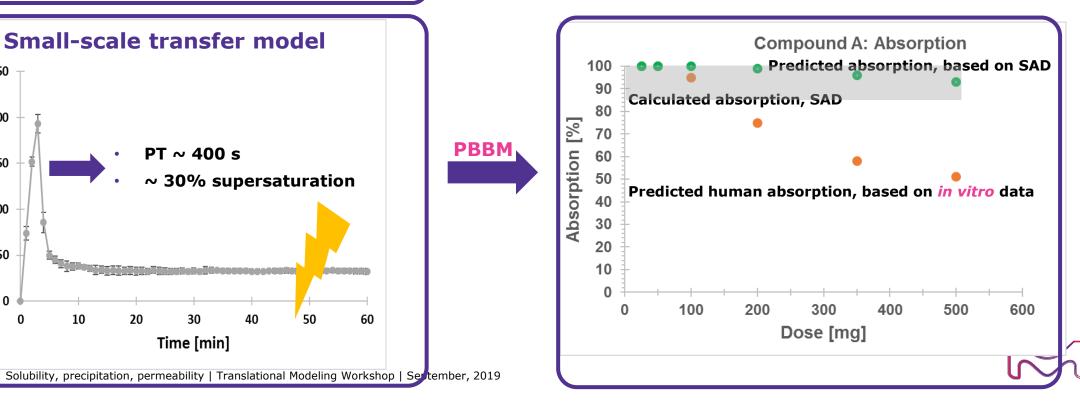
Case example 1: Transfer model to simulate precipitation of Cpd A

Compound "A", EMD Serono		
рКа	~ 6 (b)	
Solubility [µg/mL]	~ 30 (FaSSIF)	
Permeability	High	
Question	FIH: Absorption limitations?	

250

Concentration [µg/ml] ¹²⁰ ²⁰⁰ ²⁰⁰ ²⁰⁰

0


0

Scaling of precipitation parameters from in vitro data

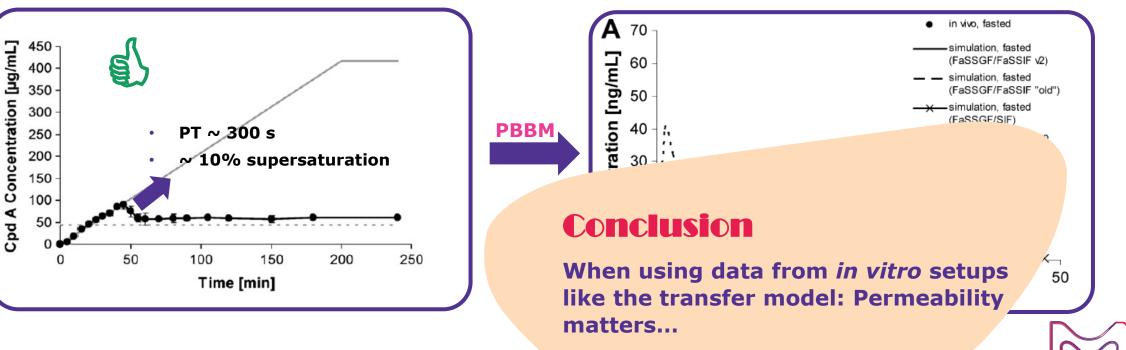
Supersaturation/preci

pitatio

Transfer model: Pronounced underprediction of absorption at medium/high doses, assay not predictive (lack of absorption sink)

Best practice: Supersaturation and precipitation

Case example 2: Transfer model to simulate precipitation of Cpd B


Compound "B", Merck & Co	
рКа	~ 4 (b); ~ 8 (b)
Solubility [µg/mL]	~ 50 (FaSSIF)
Permeability	Low (BCS 4)
Question	Precipitation impacts absorption?
Wagner et al (2012), EJPB	

Scaling of precipitation parameters from *in vitro* data

 Transfer model: Good prediction of Compound B PK profile using *in vitro* precipitation data as input parameter for the model

Supersaturation/preci pitation

 Lack of absorption sink not deemed critical, as compound yields low permeability anyway

Best practice: Supersaturation and precipitation

Case example 3: FIH absorption prediction, optimization based on animal PK

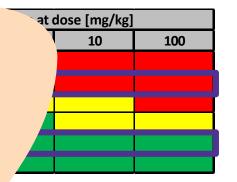
Compound "C", EMD Serono		
рКа	~ 5 (b)	
Solubility [µg/mL]	~ 3 (FaSSIF); < LOQ @ pH > 4 \rightarrow ASD	
Permeability	High	
Question	Predict FIH absorption	

Initial approach

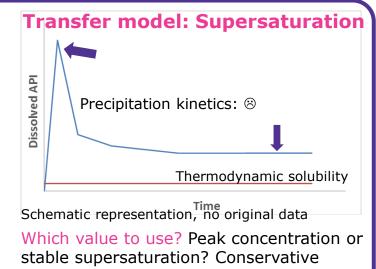
- Build bottom-up model, using measured pH-dependent and biorelevant solubility
 - Dumpin

Conclusion

Good extrapolation from animal PK to human, also for many other compounds. Cave: Species differences

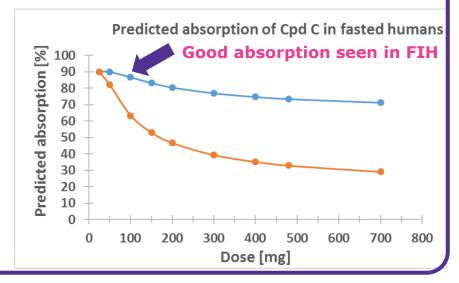

Complex formulation, high uncertainty

Simulate range rather than single value

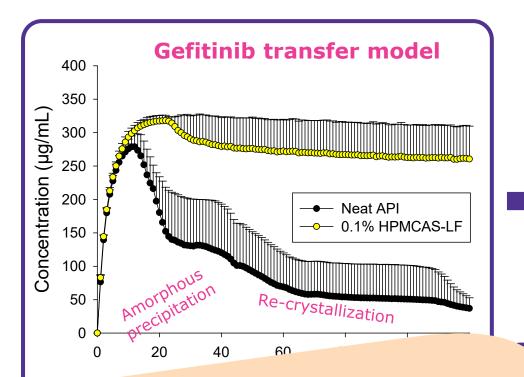


Schematic representation, no original data

Early tmax across species and dose levels: Fast dissolution from ASD, precipitation to govern fraction dissolved.

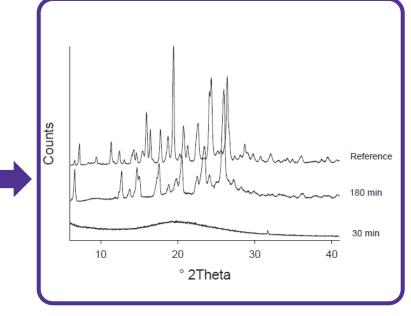


Jipitation time which fits ved exposure (AUC, Cmax, Jr each species and dose level



Supersaturation/precipitation

estimate used.



Best practice: Supersaturation and precipitation Case example 4: Precipitate ≠ precipitate

Conclusion

Precipitate ≠ precipitate. Characterization of precipitates, incl. re-dissolution, is thought to improve predictive performance for challenging compounds.

 Multi-phasic precipitation
 Amorphous precipitate confirmed after 30 min (intermediate supersaturated state)

Supersaturation/precipitation

• Slow re-crystallization

Presence of amorphous precipitates confirmed using transfer model

Gefitinib shows very high PK variability. Reasons not yet clear (genetic CYP polymorphism; gastric emptying; precipitation?)

 Though no PBBM was conducted for gefitinib, relevance of *in vitro* results for absorption modeling is deemed to be high (supersaturation; decreased precipitation)

orkshop | September, 2019 very few cases where amorphous precipitation of weak bases has been described in the literature. Future investigations needed.

Best practice: Supersaturation and precipitation **Summary**

- Some approaches reported in literature, most of them describing good predictivity of the assay.
- No systematic evaluation available.
- Internal experience with *in vitro* setups to predict precipitation: Mixed. Publication bias?

Supersaturation: *In vivo* solubility often higher than what is measured *in vitro*. Supersaturation observed in *in vitro* setups seems to be a more predictive value than (thermodynamic) solubility.

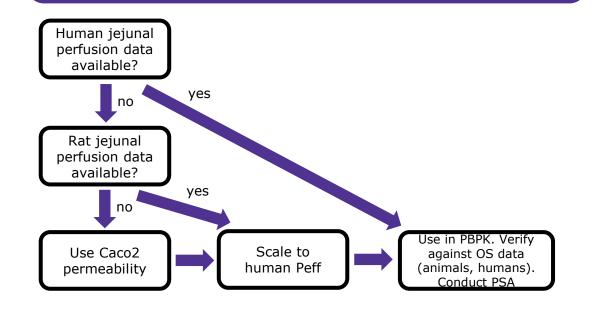

Supersaturation/precipitation

Best practice?

Precipitation kinetics: Limited confidence in predictive performance of *in vitro* precipitation models Optimizing precipitation parameters based on *in vivo* data currently seems to be the approach with the highest confidence.

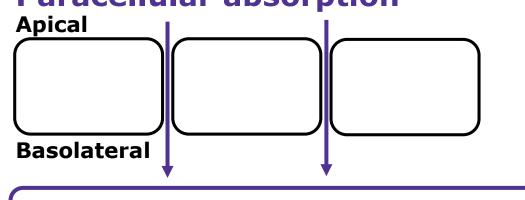
 \sim

orkshop | September, 2019



Permeability

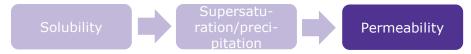
Best practice: Permeability Passive, transcellular absorption

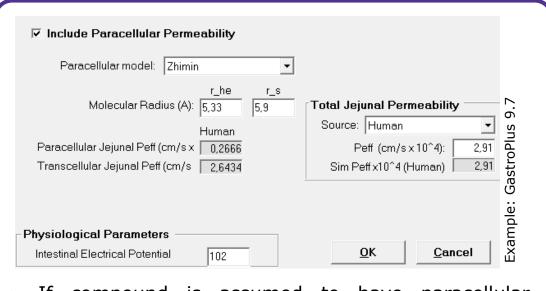

- Presumably most accurate estimate for permeability: (Rat) jejunal perfusion, which is also accepted for BCS classification [e.g. Kesisoglou (2013) AAPSJ]
- Caco2 assay (other cells; PAMPA) standard assay in industry. Important: Scaling from *in vitro* data to *in vivo* situation, using set of calibrants → Peff

Open questions, current gaps		
Level of "accuracy"	How much do we need when permeability is high anyway?	
Optimization of permeability	How to optimize when no OS available / dissolution is assumed to decelerate absorption?	
Food/excipients	How to model?	
Drift of particles into UWL	Is permeability a function of dose? [Sugano (2013) IntJPharm]	
Saturable active transport	Low basis of data. Lack of experience. Scaling from in vitro to in vivo.	
Colonic absorption	Overestimated? [Kesisoglou (2013) AAPSJ]	

Permeability

Best practice: Permeability **Paracellular absorption**

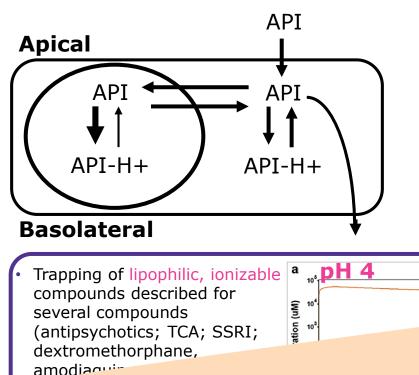



Paracellular absorption: Considered to contribute only marginally to overall absorption

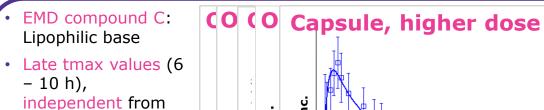
- Often small, hydrophilic molecules
- Very few reports describing how paracellular absorption is handled in PBPK, thus limited experience
- Rule of thumb [Peters (2009) 6

Conclusion

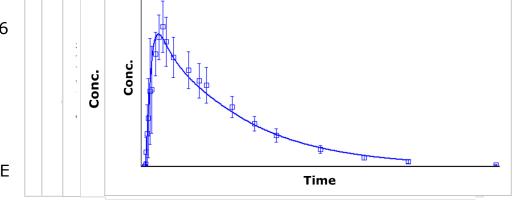
- More experience needed
- "Best practice": ?



- If compound is assumed to have paracellular absorption: Use build-in calculator (input needed: Calculated Peff; molecular radius)
- Internal experience: Paracellular absorption usually not taken into account.


Π

Best practice: Permeability Lysosomal trapping


Conclusion

- Differentiation low permeability vs. trapping
- Semi-mechanistic simulation of lysosomal trapping seems feasible

formulation (OS, capsule, tablet)

 Model building to set dissolution specifications for BE study

ations:

solution: Cmax/tmax not captured well

mizing permeability did not yield good results (tmax too early or absorption low)

Id lysosomal trapping into the model: Decrease fu,ent from 100% (default) to % (fitted) to slow down mass transfer from enterocytes into systemic circulation [Bolger et al (2019), JPharmSci].

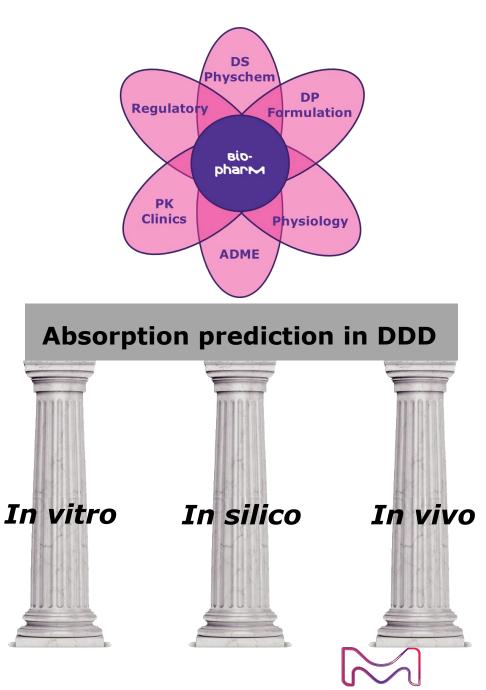
 Good fit of data for oral solution. Model was subsequently used successfully to simulate PK for various oral formulations, incl. BE study.

September, 2019

Permeability

1 Daniel (200.

spos; 3 Nadanavic et al (2011), Toxicol in vitro; 4 De Duve et al (1974) BiochemPharmacol ر


Conclusion

Building absorption models with high confidence:

We are on a good way, but we are not yet there – especially for drugs with low to moderate absorption

- What is the most predictive biorelevant medium?
- Scaling of precipitation from *in vitro* to *in vivo*
- Permeability aspects, esp. active transport
- Shortcomings in current PBPK software

Thank you for your attention ③

Dr. Christian Wagner

Head of CoE Biopharmaceutics

Pharmaceutical Technologies Chemical and Pharmaceutical Development Discovery and Development Technologies Merck Healthcare KGaA

Frankfurter Str. 250 D-64293 Darmstadt Germany

