

Physiology changes during pregnancy and Impact on drug and biologics disposition and response.

Ahizechukwu Eke, MD PhD Associate Professor, Maternal Fetal Medicine, Johns Hopkins University

Conflicts of Interest

• I have no conflicts of interest

Outline

- Physiological changes in pregnancy
 - Absorption
 - Distribution
 - Metabolism
 - Elimination
- Physiological changes as it affects drug disposition of biologics

Pregnancy affects drug disposition

Tomson T, Landmark CJ, Battino D. Antiepileptic drug treatment in pregnancy: Changes in drug disposition and their clinical implications. Epilepsia 2013; 54(3): 405-414.

Concentration-time curve (Pharmacokinetics)

Time

https://drgermophile.com/2020/06/26/pharmacokinetics-and-vancomycin/

PK parameters with greatest influence on pregnancy

- Changes in drug absorption
 Changes in drug concentration
- Volume of distribution Changes in blood volume
- Changes in protein binding Changes in blood volume
- Increased renal clearance
 Increased CO, GFR
- Changes in metabolizing enzymes Changes in drug concentration

Drug Absorption

Absorption – Intestinal transfer

Absorption – Intestinal transfer

Absorption – Intestinal transfer

Changes in GI transporter activity affecting drug absorption in pregnancy

Gastrointestinal changes	Direction and magnitude of change in pregnancy				
Transporter changes in the gut	Decreased [122]				
ABC	Increased BRCP expression in pregnant mice (30–55%) [123]				
BCRP	GLUT2 is increased during pregnancy				
GLUT2	Increased expression of P-gp in pregnant mice [120]				
MDR1 (P-gp)	Decreased MRP1 expression in pregnant mice (30-40%) [123]				
MRP1	Decreased MRP2 expression in pregnant mice (30-40%) [123]				
MRP2	Decreased expression of MRP3 in pregnant mice				
MRP3	No change in OSTa expression [123]				
OST alpha	No change/minimal increase in OSTß expression [123]				
OST beta	No change in expression of intestinal CYP3A4 [120, 124]				
CYP3A4	No change in expression of intestinal CYP3A5 [120, 124]				
CYP3A5					

Eke AC. An update on the physiologic changes during pregnancy and their impact on drug pharmacokinetics and pharmacogenomics. *J Basic Clin Physiol Pharmacol*, 2021 Dec 8. doi: 10.1515/jbcpp-2021-0312

Changes in GI transporter activity affecting drug absorption in pregnancy

DE GRUYTER	J Basic Clin Physiol Pharmacol 2021; aop

Review

Ahizechukwu C. Eke*

An update on the physiologic changes during pregnancy and their impact on drug pharmacokinetics and pharmacogenomics

Eke AC. An update on the physiologic changes during pregnancy and their impact on drug pharmacokinetics and pharmacogenomics. *J Basic Clin Physiol Pharmacol*, 2021 Dec 8. doi: 10.1515/jbcpp-2021-0312

Aspirin absorption during pregnancy compared to non-pregnant state

of optimal dosing, preparation, and chronotherapy of aspirin in pregnancy. Am J Obstet Gynecol, 2019;221(3):255.e1-255.e9.

Time (hrs)

IOHNS HOPKINS

Aspirin absorption during pregnancy compared to non-pregnant state

IOHNS HOPKINS

Drug Distribution

JOHNS HOPKINS

Volume of distribution

Pregnant

Same amount of drug -> Increased volume of distribution

Non-pregnant

***Slide courtesy of Dr Catherine Stika, Northwestern University Feinberg School of Medicine

Distribution – Volume of distribution

Changes in plasma protein during pregnancy versus postpartum

Westin AA, Reimers A, Spigset O. Should pregnant women receive higher or lower medication doses? <u>*Tidsskrift for Den norske legeforening (tidsskriftet.no. https://tidsskriftet.no/en/2018/10/klinisk-oversikt/should-pregnant-women-receive-lower-or-higher-medication-doses</u></u>*

Changes in body composition

Distribution – Volume of distribution

Changes in body composition

Changes in plasma protein during pregnancy versus postpartum

Westin AA, Reimers A, Spigset O. Should pregnant women receive higher or lower medication doses? <u>*Tidsskrift for Den norske legeforening (tidsskriftet.no. https://tidsskriftet.no/en/2018/10/klinisk-oversikt/should-pregnant-women-receive-lower-or-higher-medication-doses</u></u>*

Distribution – Volume of distribution

Changes in body composition

Changes in plasma protein during pregnancy versus postpartum

Westin AA, Reimers A, Spigset O. Should pregnant women receive higher or lower medication doses? <u>*Tidsskrift for Den norske legeforening (tidsskriftet.no. https://tidsskriftet.no/en/2018/10/klinisk-oversikt/should-pregnant-women-receive-lower-or-higher-medication-doses</u></u>*

More Protein Binding

Less Protein Binding

Non Pregnant

Pregnant

***Slide courtesy of Dr Catherine Stika, Northwestern University Feinberg School of Medicine

***Slide courtesy of Dr Catherine Stika, Northwestern University Feinberg School of Medicine

***Slide courtesy of Dr Catherine Stika, Northwestern University Feinberg School of Medicine

Pregnancy associated changes affect drug

RESEARCH ARTICLE

Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review

Gali Pariente¹, Tom Leibson¹, Alexandra Carls¹, Thomasin Adams-Webber², Shinya Ito^{1,3,4,5}*, Gideon Koren⁶

Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Ontario, Canada,
 Hospital Library, Hospital for Sick Children, Toronto, Ontario, Canada,
 Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada,
 Besearch Institute, Hospital for Sick Children, Toronto, Ontario, Canada,
 Canada,
 Department of Paediatrics, University of Toronto, Toronto, Ontario, Ontario, Canada,
 Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada,
 Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada

* Shinya.ito@sickkids.ca

Drug [Reference]	Number of Studies	Total Number of Women (Nonpregnant/ Pregnant)	Average Quality (24 Items)	Distribution Exposure Parameters Parameters		Elimination Parameters	Trimester
Amoxicillin [43]	1	16/16	22	NR	NR	Cl 140%, <i>t</i> _{1/2} 81%	3rd
Azithromycin [47,51]	2	54/84	19.5	<i>V</i> _d 121% ^{&}	AUC 90% ^{&}	<i>t</i> _{1/2} 101% ^{&}	1st–3rd
Cefatrizine [52]	1	20/20	19	NR	C _{max} 55%, AUC 57%	t _{1/2} 163%	2nd
Cefazolin [39,53,54]	3	10 ^{\$} /54	18.6	V _d 80% (72%– 89%) ^{&} , free fraction 131% ^{&}	AUC 68% ^{&}	Cl 102% (65%– 140%) ^{&} , t_{1/2} 65%^{&} , t _{1/2} 131% ^{&}	2nd–3rd
Cefoperazone [55]	1	9/11	13	Free fraction 208%	NR	NR	3rd
Cefradine [54]	1	12/12	19	<i>V</i> _d 113%	AUC 62%	CI 154%, <i>t</i> _{1/2} 73%	1st–3rd
Ceftazidime [56]	1	12/12	16	NR	NR	CI 165%	3rd
Cefuroxime [57]	1	7/7	13	V _d 109%	AUC 69%	Cl 142%, <i>t</i> _{1/2} 75%	1st–3rd
Cloxacillin [48,58]	2	14/33	13.5	Free fraction 154% (146%–162%)	NR	NR	3rd
Flucloxacillin [58]	1	7/22	11	Free fraction 148%	NR	NR	3rd
Imipenem [59]	1	6/7	15	V _d 249%	<i>C</i> _{max} 34%, AUC 41%	CI 287%, <i>t</i> _{1/2} 87%	3rd
Mecillinam [60]	1	6/10	17	<i>V</i> _d 224%	C _{max} 85%, AUC 85%	Cl 103%, t_{1/2} 142%	3rd
Moxifloxacin [61]	1	9/6	11	V _d 329%	<i>C</i> _{max} 31%, AUC 21%	t _{1/2} 63%	3rd
Penicillin V [62]	1	6/6	16	NR	C _{max} 96%, AUC 60%	Cl 118%, t_{1/2} 30%	3rd
Piperacillin [63– 65]	3	11/18	12.3	V_d 161%, V _d 145% (136%–155%)	C_{max} 50% ^{&} , C _{max} 57% ^{&} , AUC 61% ^{&} , AUC 110% ^{&}	Cl 284% , Cl 130% (96%–165%), <i>t</i> _{1/2} 86% (70%–135%)	3rd
Trimethoprim [66]	1	8/10	11	<i>V</i> _d 407%	NR	CI 346% , <i>t</i> _{1/2} 100%	2nd–3rd
Tazobactam [64]	1	6/5	13	V _d 150%	C _{max} 75%, AUC 106%	t _{1/2} 156%	3rd

Antibiotics

Pariente G, Leibson T, Carls A et al. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review. PLoS Med 2016; 13 (11): e1002160

Drug [Reference]	Number of Studies	Total Number of Women (Nonpregnant/ Pregnant)	Average Quality (24 Items)	Distribution Parameters	Exposure Parameters	Elimination Parameters	Trimester
Amoxicillin [43]	1	16/16	22	NR	NR	CI 140%, <i>t</i> _{1/2} 81%	3rd
Azithromycin [47,51]	2	54/84	19.5	<i>V</i> _d 121% ^{&}	AUC 90% ^{&}	<i>t</i> _{1/2} 101% ^{&}	1st–3rd
Cefatrizine [52]	1	20/20	19	NR	C _{max} 55%, AUC 57%	<i>t</i> _{1/2} 163%	2nd
Cefazolin [39,53,54]	3	10 ^{\$} /54	18.6	V _d 80% (72%– 89%) ^{&} , free fraction 131% ^{&}	AUC 68% ^{&}	Cl 102% (65%– 140%) ^{&} , t_{1/2} 65%^{&} , t _{1/2} 131% ^{&}	2nd–3rd
Cefoperazone [55]	1	9/11	13	Free fraction 208%	NR	NR	3rd
Cefradine [54]	1	12/12	19	V _d 113%	AUC 62%	CI 154%, <i>t</i> _{1/2} 73%	1st–3rd
Ceftazidime [56]	1	12/12	16	NR	NR	CI 165%	3rd
Cefuroxime [57]	1	7/7	13	V _d 109%	AUC 69%	Cl 142%, <i>t</i> _{1/2} 75%	1st–3rd
Cloxacillin [48,58]	2	14/33	13.5	Free fraction 154% (146%–162%)	NR	NR	3rd
Flucloxacillin [58]	1	7/22	11	Free fraction 148%	NR	NR	3rd
Imipenem [59]	1	6/7	15	V _d 249%	<i>C</i> _{max} 34%, AUC 41%	CI 287%, <i>t</i> _{1/2} 87%	3rd
Mecillinam [60]	1	6/10	17	V. 224%	C _{max} 85%, AUC 85%	Cl 103%, t_{1/2} 142%	3rd
Moxifloxacin [61]	1	9/6	11	V _d 329%	<i>C</i> _{max} 31%, AUC 21%	t _{1/2} 63%	3rd
Penicillin V [62]	1	6/6	16	NR	<i>C</i> _{max} 96%, AUC 60%	Cl 118%, t_{1/2} 30%	3rd
Piperacillin [63– 65]	3	11/18	12.3	V_d 161%, V_d 145% (136%–155%)	C_{max} 50% ^{&} , C _{max} 57% ^{&} , AUC 61% ^{&} , AUC 110% ^{&}	Cl 284% , Cl 130% (96%–165%), <i>t</i> _{1/2} 86% (70%–135%)	3rd
Trimethoprim [66]	1	8/10	11	V _d 407%	NR	CI 346% , <i>t</i> _{1/2} 100%	2nd–3rd
Tazobactam [64]	1	6/5	13	V _d 150%	C _{max} 75%, AUC 106%	t _{1/2} 156%	3rd

Antibiotics

Pariente G, Leibson T, Carls A et al. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review. PLoS Med 2016; 13 (11): e1002160

Drug [Reference]	Number of Studies	Total Number of Women (Nonpregnant/ Pregnant)	Average Quality (24 Items)	Distribution Parameters	Exposure Parameters	Elimination Parameters	Trimester
Amoxicillin [43]	1	16/16	22	NR	NR	CI 140%, <i>t</i> _{1/2} 81%	3rd
Azithromycin [47,51]	2	54/84	19.5	<i>V</i> d 121% ^{&}	AUC 90% ^{&}	<i>t</i> _{1/2} 101% ^{&}	1st–3rd
Cefatrizine [52]	1	20/20	19	NR	C _{max} 55%, AUC 57%	t _{1/2} 163%	2nd
Cefazolin [39,53,54]	3	10 ^{\$} /54	18.6	V _d 80% (72%– 89%) ^{&} , free fraction 131% ⁹	AUC 68% ^{&}	Cl 102% (65%– 140%) ^{&} , t_{1/2} 65%^{&} , t _{1/2} 131% ^{&}	2nd–3rd
Cefoperazone [55]	1	9/11	13	Free fraction 208%	NR	NR	3rd
Cefradine [54]	1	12/12	19	<i>V</i> _d 113%	AUC 62%	CI 154%, <i>t</i> _{1/2} 73%	1st-3rd
Ceftazidime [56]	1	12/12	16	NR	NR	CI 165%	3rd
Cefuroxime [57]	1	7/7	13	V _d 109%	AUC 69%	CI 142%, <i>t</i> _{1/2} 75%	1st–3rd
Cloxacillin [48,58]	2	14/33	13.5	Free fraction 154% (146%–162%)	NR	NR	3rd
Flucloxacillin [58]	1	7/22	11	Free fraction 148%	NR	NR	3rd
Imipenem [59]	1	6/7	15	V _d 249%	<i>C</i> _{max} 34%, AUC 41%	Cl 287%, <i>t</i> _{1/2} 87%	3rd
Mecillinam [60]	1	6/10	17	<i>V</i> _d 224%	C _{max} 85%, AUC 85%	Cl 103%, t_{1/2} 142%	3rd
Moxifloxacin [61]	1	9/6	11	V _d 329%	<i>C</i> _{max} 31%, AUC 21%	t _{1/2} 63%	3rd
Penicillin V [62]	1	6/6	16	NR	C _{max} 96%, AUC 60%	Cl 118%, t_{1/2} 30%	3rd
Piperacillin [63– 65]	3	11/18	12.3	V_d 161%, V_d 145% (136%–155%)	C_{max} 50% ^{&} , <i>C</i> _{max} 57% ^{&} , AUC 61% ^{&} , AUC 110% ^{&}	CI 284% , CI 130% (96%–165%), <i>t</i> _{1/2} 86% (70%–135%)	3rd
Trimethoprim [66]	1	8/10	11	<i>V</i> _d 407%	NR	Cl 346% , <i>t</i> _{1/2} 100%	2nd–3rd
Tazobactam [64]	1	6/5	13	V _d 150%	C _{max} 75%, AUC 106%	t _{1/2} 156%	3rd

Antibiotics

Pariente G, Leibson T, Carls A et al. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review. PLoS Med 2016; 13 (11): e1002160

Antimalarials	Drug [Reference]	Number of Studies	Total Number of Women (Nonpregnant/ Pregnant)	Average Quality (24 Items)	Distribution Parameters	Exposure Parameters	Elimination Parameters	Trimester
	Artemeter [181,182]	2	22/46	19	NR	<i>C</i> _{max} 52% ^{&} , AUC 31% ^{&}	NR	2nd-3rd
	Atovaquone [183]	1	0'/9	18	<i>V</i> _d 217%	C _{trough} 22%, C _{max} 37%, AUC 21%	CI 821%	2nd–3rd
	Chloroquine [184– 187]	4	50/70	18.7	<i>V</i> d 106% ^{&}	C _{max} 106% (76%–137%), AUC 74%^{&} , AUC 81% (72%–91%) ^{&}	Cl 138% (133%– 144%) ^{&} , Cl 110% ^{&} , <i>t</i> _{1/2} 91% ^{&} , <i>t</i> _{1/2} 86% ^{&}	2nd–3rd
	Lumefantrine [181,182,188,189]	4	56/188	19.2	V _d 90% ^{&}	Lower concentration ^{&,β} , <i>C</i> _{max} 101% (100%–103%) ^{&} , AUC 97% (90%114%) ^{&}	Higher Cl^{&,β} , Cl 88% ^{&} , t_{1/2} 81%^{&} , t _{1/2} 151% ^{&}	2nd–3rd
	Mefloquine [<u>190</u> – 192]	3	32/53	17.6	V_d 108%^{&} , V _d 121% ^{&}	C_{max} 77%^{&} , C _{max} 103% ^{&} , AUC 112%	Cl 162%, Cl 104% (100–109%), <i>t</i> _{1/2} 134%, <i>t</i> _{1/2} 78% (68%–88%)	1st–3rd
	Piperaquine [<u>193–</u> 195]	3	81/80	19	V _d 66% (63%– 68%), V _d 93%	C _{max} 134% ^{&} , C _{max} 126% ^{&} , AUC 66%, AUC 103% (110%–117%) ^{&}	Cl 137%, Cl 93% (90%–96%), <i>t</i> _{1/2} 72% (69%–90%)	2nd–3rd
	Proguanil [183,196]	2	4'/19	16.5	<i>V</i> _d 109%	C _{trough} 101% ^{&} , C _{max} 80% (65%–95%), AUC 77% (60%–95%)	Cl 116% (73%– 160%), t_{1/2} 71%, t _{1/2} 123%	2nd–3rd

JOHNS HOPKINS

Drug Metabolism

Westin AA, Reimers A, Spigset O. Should pregnant women receive higher or lower medication doses? <u>*Tidsskrift for Den norske legeforening (tidsskriftet.no.</u></u>. <u>https://tidsskriftet.no/en/2018/10/klinisk-oversikt/should-pregnant-women-receive-lower-or-higher-medication-doses</u></u>*

Westin AA, Reimers A, Spigset O. Should pregnant women receive higher or lower medication doses? <u>*Tidsskrift for Den norske legeforening (tidsskriftet.no.</u> <u>https://tidsskriftet.no/en/2018/10/klinisk-oversikt/should-pregnant-women-receive-lower-or-higher-medication-doses</u></u>*

Westin AA, Reimers A, Spigset O. Should pregnant women receive higher or lower medication doses? <u>*Tidsskrift for Den norske legeforening (tidsskriftet.no.</u> <u>https://tidsskriftet.no/en/2018/10/klinisk-oversikt/should-pregnant-women-receive-lower-or-higher-medication-doses</u></u>*

Enzyme	Substrate Examples
CYP1A2	Paracetamol, propranolol, theophylline
CYP2B6	Methadone, efavirenz, sertraline
CYP2C8	Verapamil, fluvastatin
CYP2C9	Glyburide, phenytoin
CYP2C19	Proguanil, indomethacin, citalopram, escitalopram
CYP2D6	Alprenolol, codeine, fluoxetine
CYP2E1	Disulfiram, theophylline
CYP3A4	Darunavir, citalopram
Uridine 5'-diphospho-glucuronosyltransferases	Lamotrigine, morphine

JOHNS HOPKINS

•. 2016 May;56(5):590-6

Metabolism – Decreased liver enzyme activity

JOHNS HOPKINS

Yu T, Campbell SC, Stockmann C et al. Pregnancy-Induced changes in the pharmacokinetics of caffeine and its metabolites. J Clin Pharmacol 2016; 56(5): 590-6.

Drug Elimination

Elimination – Changes in renal function

Westin AA, Reimers A, Spigset O. Should pregnant women receive higher or lower medication doses? <u>*Tidsskrift for Den norske legeforening (tidsskriftet.no.</u> https://tidsskriftet.no/en/2018/10/klinisk-oversikt/should-pregnant-women-receive-lower-or-higher-medication-doses</u>*

Elimination – Changes in renal function

Westin AA, Reimers A, Spigset O. Should pregnant women receive higher or lower medication doses? <u>*Tidsskrift for Den norske legeforening (tidsskriftet.no.</u> https://tidsskriftet.no/en/2018/10/klinisk-oversikt/should-pregnant-women-receive-lower-or-higher-medication-doses</u>*

Darunavir/cobicistat drug combination in

Reduced exposure to darunavir and cobicistat in HIV-1-infected pregnant women receiving a darunavir/ cobicistat-based regimen

HM Crauwels (D,¹ O Osiyemi,² C Zorrilla,³ C Bicer⁴ and K Brown⁵

¹Janssen Research & Development, Beerse, Belgium, ²Triple O Research Institute PA, West Palm Beach, FL, USA, ³University of Puerto Rico School of Medicine, San Juan, Puerto Rico, ⁴BICER Consulting & Research, Antwerp, Belgium and ⁵Janssen Research & Development, LLC, Titusville, NJ, USA

				LSM ratio (95% CI)		
	Second trimester (24–28 weeks of gestation) (n = 7)	Third trimester (34–38 weeks of gestation) (n = 6)	Postpartum (6–12 weeks postpartum) (n = 6)	Second trimester (n = 7) versus postpartum (n = 6)	Third trimester $(n = 6)$ versus postpartum $(n = 6)$	
Total daruanvir*						
C _{oh} (ng/mL)	435 (BLQ-2300)	624 (247–1850)	2625 (BLQ–5820)	ND	ND	
C_{\min} (ng/mL) [†]	134 (BLQ–369)	162 (50.9–304)	1381 (BLQ–3220)	0.08 (0.01–0.50)	0.11 (0.04–0.30)	
C _{max} (ng/mL)	4710 (1050–5760)	4855 (3530–6210)	7445 (5880–12 000)	0.51 (0.30–0.86)	0.63 (0.50–0.79)	
t _{max} (h)	4.00 (3.00-6.00)	3.50 (2.00-6.00)	4.00 (2.00–6.00)	ND	ND	
AUC _{24 h} (ng h/mL)	52 009 (10 547–71 497)	50 214 (34 068–57 509)	91 644 (64 573–157 934)	0.44 (0.24–0.80)	0.50 (0.37–0.66)	
Unbound darunavir						
C _{oh} (ng/mL)	56.5 (BLQ–361)	89.2 (56.7–439)	399 (BLQ-826)	ND	ND	
C _{min} (ng/mL) [‡]	17.5 (BLQ–54.1)	31.2 (9.35–57.3)	229 (BLQ-420)	0.08 (0.02–0.42)	0.12 (0.05–0.27)	
C _{max} (ng/mL)	945 (168–1110)	1058 (777–1109)	1199 (866–2065)	0.59 (0.34–1.02)	0.77 (0.59–1.00)	
t _{max} (h)	4.05 (1.03–6.00)	4.00 (2.00–4.00)	3.50 (2.00–6.00)	ND	ND	
AUC _{24 h} (ng h/mL)	9725 (1885–12 310)	8883 (6132–11 883)	15 429 (6958–23 792)	0.55 (0.28–1.06)	0.60 (0.44–0.83)	
Cobicistat						
C _{min} (ng/mL)	BLQ (BLQ-10.0)	BLQ (BLQ-7.02)	29.1 (BLQ–134)	0.17 (0.05–0.61)	0.17 (0.04–0.74)	
C _{max} (ng/mL) [§]	523 (173–1190)	671 (365–1430)	971 (629–1460)	0.50 (0.28–0.91)	0.73 (0.52–1.02)	
t _{max} (h)	4.03 (2.00–6.00)	3.50 (2.00–4.00)	4.00 (2.00–4.00)	ND	ND	
AUC _{24 h} (ng h/mL)	3654 (1088–8892)	4072 (1963–10 379)	9424 (4801–11 989)	0.37 (0.17–0.79)	0.51 (0.33–0.80)	

JOHNS HOPKINS

JOHNS HOPKINS

				LSM ratio (95% CI)		
	Second trimester (24–28 weeks of gestation) (n = 7)	Third trimester $(34-38 \text{ weeks of } gestation) (n = 6)$	Postpartum (6–12 weeks postpartum) (n = 6)	Second trimester (n = 7) versus postpartum (n = 6)	Third trimester $(n = 6)$ versus postpartum $(n = 6)$	
Total daruanvir*						
C _{oh} (ng/mL)	435 (BLQ-2300)	624 (247–1850)	2625 (BLQ–5820)	ND	ND	
C _{min} (ng/mL) [†]	134 (BLQ–369)	162 (50.9–304)	1381 (BLQ–3220)	0.08 (0.01–0.50)	0.11 (0.04–0.30)	
C _{max} (ng/mL)	4710 (1050–5760)	4855 (3530–6210)	7445 (5880–12 000)	0.51 (0.30–0.86)	0.63 (0.50–0.79)	
t _{max} (h)	4.00 (3.00-6.00)	3.50 (2.00-6.00)	4.00 (2.00–6.00)	ND	ND	
AUC _{24 h} (ng h/mL)	52 009 (10 547–71 497)	50 214 (34 068–57 509)	91 644 (64 573–157 934)	0.44 (0.24–0.80)	0.50 (0.37–0.66)	
Unbound darunavir						
C _{oh} (ng/mL)	56.5 (BLQ–361)	89.2 (56.7–439)	399 (BLQ–826)	ND	ND	
C _{min} (ng/mL) [‡]	17.5 (BLQ–54.1)	31.2 (9.35–57.3)	229 (BLQ-420)	0.08 (0.02–0.42)	0.12 (0.05–0.27)	
C _{max} (ng/mL)	945 (168–1110)	1058 (777–1109)	1199 (866–2065)	0.59 (0.34–1.02)	0.77 (0.59–1.00)	
t _{max} (h)	4.05 (1.03–6.00)	4.00 (2.00–4.00)	3.50 (2.00–6.00)	ND	ND	
AUC _{24 h} (ng h/mL)	9725 (1885–12 310)	8883 (6132–11 883)	15 429 (6958–23 792)	0.55 (0.28–1.06)	0.60 (0.44–0.83)	
Cobicistat						
C _{min} (ng/mL)	BLQ (BLQ-10.0)	BLQ (BLQ-7.02)	29.1 (BLQ–134)	0.17 (0.05–0.61)	0.17 (0.04–0.74)	
C _{max} (ng/mL) [§]	523 (173–1190)	671 (365–1430)	971 (629–1460)	0.50 (0.28–0.91)	0.73 (0.52–1.02)	
t _{max} (h)	4.03 (2.00–6.00)	3.50 (2.00-4.00)	4.00 (2.00-4.00)	ND	ND	
AUC _{24 h} (ng h/mL)	3654 (1088–8892)	4072 (1963–10 379)	9424 (4801–11 989)	0.37 (0.17–0.79)	0.51 (0.33–0.80)	

JOHNS HOPKINS

				LSM ratio (95% CI)		
	Second trimester (24–28 weeks of gestation) ($n = 7$)	Third trimester $(34-38 \text{ weeks of } gestation) (n = 6)$	Postpartum (6–12 weeks postpartum) (n = 6)	Second trimester (n = 7) versus postpartum (n = 6)	Third trimester $(n = 6)$ versus postpartum $(n = 6)$	
Total daruanvir*						
C _{oh} (ng/mL)	435 (BLQ-2300)	624 (247–1850)	2625 (BLQ–5820)	ND	ND	
$C_{\rm min}$ (ng/mL) [†]	134 (BLQ-369)	162 (50.9–304)	1381 (BLQ-3220)	0.08 (0.01-0.50)	0.11 (0.04–0.30)	
$C_{\rm max}$ (ng/mL)	4710 (1050–5760)	4855 (3530–6210)	7445 (5880–12 000)	0.51 (0.30–0.86)	0.63 (0.50–0.79)	
t _{max} (h)	4.00 (3.00-6.00)	3.50 (2.00-6.00)	4.00 (2.00–6.00)	ND	ND	
AUC _{24 h} (ng h/mL)	52 009 (10 547–71 497)	50 214 (34 068–57 509)	91 644 (64 573–157 934)	0.44 (0.24–0.80)	0.50 (0.37–0.66)	
Unbound darunavir						
C _{oh} (ng/mL)	56.5 (BLQ–361)	89.2 (56.7–439)	399 (BLQ–826)	ND	ND	
C _{min} (ng/mL) [‡]	17.5 (BLQ–54.1)	31.2 (9.35–57.3)	229 (BLQ-420)	0.08 (0.02–0.42)	0.12 (0.05–0.27)	
C _{max} (ng/mL)	945 (168–1110)	1058 (777–1109)	1199 (866–2065)	0.59 (0.34–1.02)	0.77 (0.59–1.00)	
t _{max} (h)	4.05 (1.03–6.00)	4.00 (2.00–4.00)	3.50 (2.00–6.00)	ND	ND	
AUC _{24 h} (ng h/mL)	9725 (1885–12 310)	8883 (6132–11 883)	15 429 (6958–23 792)	0.55 (0.28–1.06)	0.60 (0.44–0.83)	
Cobicistat						
C _{min} (ng/mL)	BLQ (BLQ-10.0)	BLQ (BLQ-7.02)	29.1 (BLQ-134)	0.17 (0.05–0.61)	0.17 (0.04–0.74)	
C _{max} (ng/mL) [§]	523 (173–1190)	671 (365–1430)	971 (629–1460)	0.50 (0.28–0.91)	0.73 (0.52–1.02)	
t _{max} (h)	4.03 (2.00–6.00)	3.50 (2.00–4.00)	4.00 (2.00–4.00)	ND	ND	
AUC _{24 h} (ng h/mL)	3654 (1088–8892)	4072 (1963–10 379)	9424 (4801–11 989)	0.37 (0.17–0.79)	0.51 (0.33–0.80)	

JOHNS HOPKINS

				LSM ratio (95% CI)		
	Second trimester (24–28 weeks of gestation) ($n = 7$)	Third trimester (34–38 weeks of gestation) ($n = 6$)	Postpartum (6–12 weeks postpartum) (n = 6)	Second trimester (n = 7) versus postpartum (n = 6)	Third trimester $(n = 6)$ versus postpartum $(n = 6)$	
Total daruanvir*						
C _{oh} (ng/mL)	435 (BLQ-2300)	624 (247–1850)	2625 (BLQ–5820)	ND	ND	
C_{\min} (ng/mL) [†]	134 (BLQ–369)	162 (50.9–304)	1381 (BLQ–3220)	0.08 (0.01–0.50)	0.11 (0.04–0.30)	
$C_{\rm max}$ (ng/mL)	4710 (1050–5760)	4855 (3530–6210)	7445 (5880–12 000)	0.51 (0.30–0.86)	0.63 (0.50–0.79)	
t _{max} (h)	4.00 (3.00-6.00)	3.50 (2.00-6.00)	4.00 (2.00–6.00)	ND	ND	
AUC _{24 h} (ng h/mL)	52 009 (10 547–71 497)	50 214 (34 068–57 509)	91 644 (64 573–157 934)	0.44 (0.24–0.80)	0.50 (0.37–0.66)	
Unbound darunavir						
C _{oh} (ng/mL)	56.5 (BLQ–361)	89.2 (56.7–439)	399 (BLQ–826)	ND	ND	
C _{min} (ng/mL) [‡]	17.5 (BLQ–54.1)	31.2 (9.35–57.3)	229 (BLQ-420)	0.08 (0.02-0.42)	0.12 (0.05–0.27)	
C _{max} (ng/mL)	945 (168–1110)	1058 (777–1109)	1199 (866–2065)	0.59 (0.34–1.02)	0.77 (0.59–1.00)	
t _{max} (h)	4.05 (1.03–6.00)	4.00 (2.00–4.00)	3.50 (2.00–6.00)	ND	ND	
AUC _{24 h} (ng h/mL)	9725 (1885–12 310)	8883 (6132–11 883)	15 429 (6958–23 792)	0.55 (0.28–1.06)	0.60 (0.44–0.83)	
Cobicistat						
C _{min} (ng/mL)	BLQ (BLQ-10.0)	BLQ (BLQ-7.02)	29.1 (BLQ–134)	0.17 (0.05–0.61)	0.17 (0.04–0.74)	
$C_{ m max}$ (ng/mL) $^{ m \$}$	523 (173–1190)	671 (365–1430)	971 (629–1460)	0.50 (0.28–0.91)	0.73 (0.52–1.02)	
t _{max} (h)	4.03 (2.00–6.00)	3.50 (2.00–4.00)	4.00 (2.00–4.00)	ND	ND	
AUC _{24 h} (ng h/mL)	3654 (1088–8892)	4072 (1963–10 379)	9424 (4801–11 989)	0.37 (0.17–0.79)	0.51 (0.33–0.80)	

JOHNS HOPKINS

				LSM ratio (95% CI)		
	Second trimester (24–28 weeks of gestation) ($n = 7$)	Third trimester (34–38 weeks of gestation) (n = 6)	Postpartum (6–12 weeks postpartum) (n = 6)	Second trimester (n = 7) versus postpartum (n = 6)	Third trimester $(n = 6)$ versus postpartum $(n = 6)$	
Total daruanvir*						
C _{0 h} (ng/mL)	435 (BLQ-2300)	624 (247–1850)	2625 (BLQ–5820)	ND	ND	
C_{\min} (ng/mL) [†]	134 (BLQ–369)	162 (50.9–304)	1381 (BLQ–3220)	0.08 (0.01–0.50)	0.11 (0.04–0.30)	
$C_{\rm max}$ (ng/mL)	4710 (1050–5760)	4855 (3530–6210)	7445 (5880–12 000)	0.51 (0.30–0.86)	0.63 (0.50–0.79)	
t _{max} (h)	4.00 (3.00-6.00)	3.50 (2.00-6.00)	4.00 (2.00–6.00)	ND	ND	
AUC _{24 h} (ng h/mL)	52 009 (10 547–71 497)	50 214 (34 068–57 509)	91 644 (64 573–157 934)	0.44 (0.24–0.80)	0.50 (0.37–0.66)	
Unbound darunavir						
C _{0 h} (ng/mL)	56.5 (BLQ–361)	89.2 (56.7–439)	399 (BLQ–826)	ND	ND	
C _{min} (ng/mL) [‡]	17.5 (BLQ–54.1)	31.2 (9.35–57.3)	229 (BLQ–420)	0.08 (0.02-0.42)	0.12 (0.05–0.27)	
C _{max} (ng/mL)	945 (168–1110)	1058 (777–1109)	1199 (866–2065)	0.59 (0.34–1.02)	0.77 (0.59–1.00)	
t _{max} (h)	4.05 (1.03-6.00)	4.00 (2.00-4.00)	3.50 (2.00–6.00)	ND	ND	
AUC _{24 h} (ng h/mL)	9725 (1885–12 310)	8883 (6132–11 883)	15 429 (6958–23 792)	0.55 (0.28–1.06)	0.60 (0.44–0.83)	
Cobicistat						
C _{min} (ng/mL)	BLQ (BLQ-10.0)	BLQ (BLQ-7.02)	29.1 (BLQ-134)	0.17 (0.05–0.61)	<u>0.17 (</u> 0.04–0.74)	
C _{max} (ng/mL) [§]	523 (173–1190)	671 (365–1430)	971 (629–1460)	0.50 (0.28–0.91)	0.73 (0.52–1.02)	
t _{max} (h)	4.03 (2.00-6.00)	3.50 (2.00-4.00)	4.00 (2.00-4.00)	ND	ND	
$AUC_{24 h}$ (ng h/mL)	3654 (1088–8892)	4072 (1963–10 379)	9424 (4801–11 989)	0.37 (0.17–0.79)	0.51 (0.33–0.80)	

Elvitegravir/<u>cobicistat</u> pharmacokinetics in pregnant and postpartum women with HIV

Jeremiah D. Momper^a, Brookie M. Best^a, Jiajia Wang^b, Edmund V. Capparelli^a, Alice Stek^c, Emily Barr^d, Martina L. Badell^e, Edward P. Acosta^f, Murli Purswani^g, Elizabeth Smith^h, Nahida Chakhtouraⁱ, Kyunghun Park^a, Sandra Burchett^j, David E. Shapiro^b, Mark Mirochnick^k, for the IMPAACT P1026s Protocol Team

Elvitegravir/<u>cobicistat</u> pharmacokinetics in pregnant and postpartum women with HIV

Jei Edmund Ec Na

Da

Pharmacokinetics of darunavir and <u>cobicistat</u> in pregnant and postpartum women with HIV Jeremiah D. Momper^a, Jiajia Wang^b, Alice Stek^c, David E. Shapiro^b, Gwendolyn B. Scott^d, Mary E. Paul^e, Irma L. Febo^f, Sandra Burchett^g, Elizabeth Smith^h, Nahida Chakhtouraⁱ, Kayla Denson^j, Kittipong Rungruengthanakit^k, Kathleen George^I, Derek Z. Yang^a, Edmund V. Capparelli^a, Mark Mirochnick^m, Brookie M. Best^a, for the IMPAACT P1026s Protocol Team

Elvitegravir/<u>cobicistat</u> pharmacokinetics in pregnant and postpartum women with HIV

Pharmacokinetics of darunavir and <u>cobicistat</u> in pregnant and postpartum women with HIV

Jeremiah D. Momper^a, Jiajia Wang^b, Alice Stek^c, David E. Shapiro^b,

Gwendolyn Eliza Kittipong Edmund

le

Ε

Na

Da

Edmund

Pharmacokinetics of Atazanavir Boosted With <u>Cobicistat</u> in Pregnant and Postpartum Women With HIV

Jeremiah D. Momper, PharmD, PhD,^a Jiajia Wang, MS,^b Alice Stek, MD,^c David E. Shapiro, PhD,^b Kathleen M. Powis, MD,^d Mary E. Paul, MD,^e Martina L. Badell, MD,^f Renee Browning, RN, MSN,^g Nahida Chakhtoura, MD,^h Kayla Denson, PhD,ⁱ Kittipong Rungruengthanakit, MD,^j Kathleen George, MPH,^k Edmund V. Capparelli, PharmD,^a Mark Mirochnick, MD,^l and Brookie M. Best, PharmD, MAS,^a for the IMPAACT P1026s Protocol Team

Therapeutic failure during pregnancy

 Dose — Dose requirement Dose ▲ 	
Not pregnant	Pregnant
Therapeutic effect	Therapeutic failure
	► Time

Westin AA, Reimers A, Spigset O. Should pregnant women receive higher or lower medication doses? <u>Tidsskrift for Den norske legeforening (tidsskriftet.no</u>. <u>https://tidsskriftet.no/en/2018/10/klinisk-oversikt/should-pregnant-women-receive-lower-or-higher-medication-doses</u>

Therapeutic failure during pregnancy

Westin AA, Reimers A, Spigset O. Should pregnant women receive higher or lower medication doses? <u>Tidsskrift for Den norske legeforening (tidsskriftet.no</u>. <u>https://tidsskriftet.no/en/2018/10/klinisk-oversikt/should-pregnant-women-receive-lower-or-higher-medication-doses</u>

Therapeutic failure during pregnancy

Westin AA, Reimers A, Spigset O. Should pregnant women receive higher or lower medication doses? <u>Tidsskrift for Den norske legeforening (tidsskriftet.no</u>. <u>https://tidsskriftet.no/en/2018/10/klinisk-oversikt/should-pregnant-women-receive-lower-or-higher-medication-doses</u>

For Members of the American Society for Clinical Pharmacology & Therapeutics
NOVEMBER 2018
ASCPT home page Annual Meeting Join/Renew Submit to CPT Submit to PSP Submit to CTS

FDA Revises Certain Antiretroviral Drug Labeling to Not Recommend Cobicistat During Pregnancy

How changes in clearance affect drug PK

Anticonvulsants Antidepressants

RESEARCH ARTICLE

Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review

Gali Pariente¹, Tom Leibson¹, Alexandra Carls¹, Thomasin Adams-Webber², Shinya Ito^{1,3,4,5}*, Gideon Koren⁶

Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Ontario, Canada,
 Hospital Library, Hospital for Sick Children, Toronto, Ontario, Canada, 3 Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada, 4 Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada, 5 Department of Paediatrics Quiversity of Toronto, Toronto, Ontario, Canada, 6 Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada,

* Shinya.ito@sickkids.ca

Drug Reference]	Number of Studies	Total Number of Women (Nonpregnant/ Pregnant)	Average Quality (24 Items)	Distribution Parameters	Exposure Parameters	Elimination Parameters	Trimester
Carbamazepine [77–85]	9	128/130	11.7	Free fraction 116% (113%–119%) ^{&} , free fraction 101% (95%– 107%) ^{&}	Total concentration 79% ^{&}	Cl 127% (116%– 140%)^{&} , Cl 110% (108%–112%) ^{&}	1st–3rd
Lamotrigine [83,86–93]	9	208/241	15.7	NR	C/D ratio 34% ^{&}	Cl 212% (185%– 240%) ^{&}	3rd
Levetiracetam [16,83,94,95]	4	47/47	14	NR	C/D ratio 45% (39%–52%) ^{&}	Cl 269% (197%– 342%) ^{&}	3rd
Oxcarbazepine [83,96–98]	4	28/28	13.7	NR	Lower concentration and C/D ratio ^{&,β}	CI 237% ^{&}	3rd
Phenytoin [81,82,84,99]	4	82/78	12.5	Free fraction 126% ^{&}	Total concentration 67% (51%–84%) ^{&}	Cl 145% (130%– 160%) ^{&}	1st–3rd
Phenobarbital [81]	1	11/11	9	Free fraction 112%	Total concentration 53%	CI 125%	3rd
Topiramate [83,100,101]	3	21/25	16	NR	C/D ratio 60% (57%–64%) ^{&}	CI 110% ^{&}	3rd

IOHNS HOPKINS

MEDICIN

How changes in clearance affect drug PK

Drug [Reference]	Number of Studies	Total Number of Women (Nonpregnant/ Pregnant)	Average Quality (24 Items)	Distribution Parameters	Exposure Parameters	Elimination Parameters	Trimester
Ketorolac [102]	1	8/8	16	<i>V</i> _d 134%	NR	CI 150%, <i>t</i> _{1/2} 108%	3rd
Morphine [103]	1	6/8	19	V _d 92%	AUC 96%	CI 169%, <i>t</i> _{1/2} 51%	3rd
Paracetamol [49,102,104– 107]	6	52/85	18.1	V _d 182% ^{&}	C _{trough} 56% ^{&} , C _{max} 87% (42%–96%) ^{&} , AUC 72% ^{&} , AUC 83% ^{&}	Cl 142% (132%– 196%), t_{1/2} 80%^{&} , t _{1/2} 95% (72%–119% ^{&}	1st + 3rd

Analgesics and anesthetic agents

RESEARCH ARTICLE

Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review

Gali Pariente¹, Tom Leibson¹, Alexandra Carls¹, Thomasin Adams-Webber², Shinya Ito $^{1,3,4,5\,*},$ Gideon Koren 6

1 Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Ontario, Canada, 2 Hospital Library, Hospital for Sick Children, Toronto, Ontario, Canada, 3 Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada, 4 Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada, 5 Department of Pharmacology & Toxicology, University of Toronto, Ontario, Canada, 6 Leslie Dan Faculty of Pharmacy, University of Toronto, Torando,

* Shinya.ito@sickkids.ca

Pariente G, Leibson T, Carls A et al. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review. PLoS Med 2016; 13 (11): e1002160

How changes in clearance affect drug PK

Antibiotics

RESEARCH ARTICLE

Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review

Gali Pariente¹, Tom Leibson¹, Alexandra Carls¹, Thomasin Adams-Webber², Shinya Ito^{1,3,4,5}*, Gideon Koren⁶

Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Ontario, Canada,
 Hospital Library, Hospital for Sick Children, Toronto, Ontario, Canada, 3 Research Institute, Hospital for
 Sick Children, Toronto, Ontario, Canada, 4 Department of Paediatrics, University of Toronto, Toronto,
 Ontario, Canada, 5 Department of Pharmacology & Toxicology, University of Toronto, Ontario,
 Canada, 6 Lesile Dan Faculty of Pharmacoy, University of Toronto, Toronto, Ontario,

* Shinya.ito@sickkids.ca

Drug [Reference]	Number of Studies	Total Number of Women (Nonpregnant/ Pregnant)	Average Quality (24 Items)	Distribution Parameters	Exposure Parameters	Elimination Parameters	Trimester
Amoxicillin [43]	1	16/16	22	NR	NR	Cl 140%, <i>t</i> _{1/2} 81%	3rd
Azithromycin [47,51]	2	54/84	19.5	<i>V</i> _d 121% ^{&}	AUC 90% ^{&}	t _{1/2} 101% ^{&}	1st–3rd
Cefatrizine [52]	1	20/20	19	NR	C _{max} 55%, AUC 57%	t _{1/2} 163%	2nd
Cefazolin [39,53,54]	3	10 ^{\$} /54	18.6	V _d 80% (72%– 89%) ^{&} , free fraction 131% ^{&}	AUC 68% ^{&}	Cl 102% (65%– 140%) ^{&} , t_{1/2} 65% ^{&} , t _{1/2} 131% ^{&}	2nd–3rd
Cefoperazone [55]	1	9/11	13	Free fraction 208%	NR	NR	3rd
Cefradine [54]	1	12/12	19	V _d 113%	AUC 62%	CI 154%, <i>t</i> _{1/2} 73%	1st–3rd
Ceftazidime [56]	1	12/12	16	NR	NR	CI 165%	3rd
Cefuroxime [57]	1	7/7	13	<i>V</i> _d 109%	AUC 69%	Cl 142%, <i>t</i> _{1/2} 75%	1st–3rd
Cloxacillin [48,58]	2	14/33	13.5	Free fraction 154% (146%–162%)	NR	NR	3rd
Flucloxacillin [58]	1	7/22	11	Free fraction 148%	NR	NR	3rd
Imipenem [59]	1	6/7	15	V _d 249%	C _{max} 34%, AUC 41%	Cl 287%, <i>t</i> _{1/2} 87%	3rd
Mecillinam [60]	1	6/10	17	V _d 224%	C _{max} 85%, AUC 85%	Cl 103%, t_{1/2} 142%	3rd
Moxifloxacin [61]	1	9/6	11	V _d 329%	<i>C</i> _{max} 31%, AUC 21%	t _{1/2} 63%	3rd
Penicillin V [62]	1	6/6	16	NR	C _{max} 96%, AUC 60%	Cl 118%, t_{1/2} 30%	3rd
Piperacillin [63– 65]	3	11/18	12.3	V_d 161% , V _d 145% (136%–155%)	C _{max} 50% ^{&} , C _{max} 57% ^{&} , AUC 61% ^{&} , AUC 110% ^{&}	Cl 284% , Cl 130% (96%–165%), <i>t</i> _{1/2} 86% (70%–135%)	3rd
Trimethoprim [66]	1	8/10	11	V _d 407%	NR	Cl 346%, <i>t</i> _{1/2} 100%	2nd–3rd
Tazobactam	1	6/5	13	V _d 150%	C _{max} 75%, AUC 106%	t _{1/2} 156%	3rd

Pariente G, Leibson T, Carls A et al. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review. PLoS Med 2016; 13 (11): e1002160

How V_d and plasma protein changes affect drug PK

Antimalarials

RESEARCH ARTICLE

Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review

Gali Pariente $^1\!,$ Tom Leibson $^1\!,$ Alexandra Carls $^1\!,$ Thomasin Adams-Webber $^2\!,$ Shinya Ito $^{1,3,4,5}*,$ Gideon Koren 6

Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Ontario, Canada,
 Hospital Library, Hospital for Sick Children, Toronto, Ontario, Canada, 3 Research Institute, Hospital for
 Sick Children, Toronto, Ontario, Canada, 4 Department of Paediatrics, University of Toronto, Toronto,
 Ontario, Canada, 5 Department of Pharmacology & Toxicology, University of Toronto, Ontario,
 Canada, 6 Lesile Dan Faculty of Pharmacoy, University of Toronto, Toronto, Ontario,

* Shinya.ito@sickkids.ca

Drug [Reference]	Number of Studies	Total Number of Women (Nonpregnant/ Pregnant)	Average Quality (24 Items)	Distribution Parameters	Exposure Parameters	Elimination Parameters	Trimester
Artemeter [181,182]	2	22/46	19	NR	C _{max} 52% ^{&} , AUC 31% ^{&}	NR	2nd–3rd
Atovaquone [183]	1	0 [!] /9	18	<i>V</i> _d 217%	C _{trough} 22%, C _{max} 37%, AUC 21%	CI 821%	2nd–3rd
Chloroquine [184– 187]	4	50/70	18.7	V _d 106% ^{&}	C _{max} 106% (76%–137%), AUC 74%^{&} , AUC 81% (72%–91%) ^{&}	Cl 138% (133%– 144%)^{&} , Cl 110% ^{&} , t_{1/2} 91%^{&} , t _{1/2} 86% ^{&}	2nd–3rd
Lumefantrine [181,182,188,189]	4	56/188	19.2	V _d 90% ^{&}	Lower concentration ^{&,β} , <i>C</i> _{max} 101% (100%–103%) ^{&} , AUC 97% (90%114%) ^{&}	Higher Cl^{&,β} , Cl 88% ^{&} , t_{1/2} 81%^{&} , t _{1/2} 151% ^{&}	2nd–3rd
Mefloquine [<u>190</u> – 192]	3	32/53	17.6	V_d 108%^{&}, V _d 121% ^{&}	C_{max} 77%^{&} , C _{max} 103% ^{&} , AUC 112%	Cl 162%, Cl 104% (100–109%), t _{1/2} 134% , t _{1/2} 78% (68%–88%)	1st–3rd
Piperaquine [<u>193</u> – 195]	3	81/80	19	V _d 66% (63%– 68%), V _d 93%	C _{max} 134% ^{&} , C _{max} 126% ^{&} , AUC 66% , AUC 103% (110%–117%) ^{&}	Cl 137%, Cl 93% (90%–96%), <i>t</i> _{1/2} 72% (69%–90%)	2nd–3rd
Proguanil [<u>183,196</u>]	2	4 [!] /19	16.5	V _d 109%	C _{trough} 101% ^{&} , C _{max} 80% (65%–95%), AUC 77% (60%–95%)	Cl 116% (73%– 160%), t_{1/2} 71% , t _{1/2} 123%	2nd–3rd

IOHNS H

Effect of pregnancy on the PK and PD of Monoclonal antibodies

Monoclonal antibodies

		Estimated drug clearance in	Level of clinical	
Biologic	Drug transfer to fetus	the infant	experience*	
Infliximab	High	3–7 mo	++++	
Adalimumab	Moderate	3–5 mo	++++	
Golimumab	Moderate	Unknown	+	
Certolizumab	Minimal (passive	NA	+++	
pegol	diffusion)			
Etanercept	Low	0–3 mo	+++	
Ustekinumab	Moderate	Unknown	+	
Vedolizumab	Low-moderate	Likely $< 3 \text{ mo}$	+	
Natalizumab	Low-moderate	Unknown	+	
Rituximab	Moderate-high	Unknown	+	
Belimumab	Unknown	Unknown	+	

Pham-Huy A, Top KA, Constantinescu C et al. The use and impact of monoclonal antibody biologics during pregnancy. CMAJ 2021 Jul 26; 193(29): E1129–E1136

Additional physiologic changes affecting MAb disposition

- Monoclonal antibody structure
- Antigen properties
- Increased anti-drug antibody (ADA) formation to mAb
- Increased complement activity
- Flip flop kinetics

Absorption of Biologics

Absorption of monoclonal antibodies

- Distinct from small-molecule drugs
- Most mAb are administered parenterally
 - Large molecular size (>150kD)
 - Poor lipophilicity
 - Increased GI degradation
- Bioavailability (50-100%)
 - Protein degradation in pregnancy?
 - Increased blood flow

Distribution of Biologics

- Relatively low volume of distribution (plasma)
 - High molecular weight
 - Hydrophilic profile
- Volume of distribution approximate the size of blood and extracellular space (3-8L)

Drug Name	Target	Source	Route of	FDA-	FDA	Bioavailability	Elimination	Volume of
			administration	indication	category		(days)	distribution
Adalimumab (<u>AbbVie, 2013</u>)	ΤΝΓα	Human ^a	SC	IBD, RA ^{<u>d</u>} , psoriasis, ankylosing spondylitis	В	64%	14	4.7–6 L
Certolizumab pegol (<u>UBC, 2013</u>)	TNFα	Humanized ^b	SC	IBD	В	76–88%	14	6–8 L
Golimumab (<u>Janssen, 2014</u>)	TNFα	Human ^a	SC	UC, RA, psoriatic arthritis, ankylosing spondylitis	В	53%	14	58–126 ml/kg
Infliximab (<u>Janssen</u> , 2013)	ΤΝFα	Chimeric ^c	IV	IBD, RA, psoriasis, ankylosing spondylitis	В	-	7–12	3–6 L
Natalizumab (<u>Biogen, 2013</u>)	α4- integrin	Humanized ^b	IV	CD, multiple sclerosis	С	-	3–17	~5 L

Stone RH, Hong J, Jeong H. Pharmacokinetics of monoclonal antibodies used for inflammatory bowel diseases in pregnant women. J Clin Toxicol 2014; 4(4): 209

Drug Name	Target	Source	Route of	FDA-	FDA	Bioavailability	Elimination	Volume of
			administration	approved	pregnancy		half-life	distribution
				indication	category		(days)	
Adalimumab	ΤΝFα	Human ^a	SC	IBD, RA ^{<u>d</u>} , psoriasis,	В	64%	14	4.7–6 L
(<u>AbbVie, 2013</u>)				ankylosing spondylitis				
Certolizumab pegol	ΤΝΓα	Humanized ^b	SC	IBD	В	76–88%	14	6–8 L
(<u>UBC, 2013</u>)								
Golimumab	ΤΝFα	Human ^a	SC	UC, RA, psoriatic	В	53%	14	58–126
(<u>Janssen, 2014</u>)				arthritis, ankylosing				ml/kg
				spondylitis				
Infliximab (<u>Janssen</u> ,	ΤΝFα	Chimeric ^c	IV	IBD, RA, psoriasis,	В	-	7–12	3–6 L
<u>2013</u>)				ankylosing spondylitis				
Natalizumab	α4-	Humanized ^b	IV	CD, multiple sclerosis	С	-	3–17	~5 L
(<u>Biogen, 2013</u>)	integrin							

Stone RH, Hong J, Jeong H. Pharmacokinetics of monoclonal antibodies used for inflammatory bowel diseases in pregnant women. J Clin Toxicol 2014; 4(4): 209

Drug Name	Target	Source	Route of	FDA-	FDA	Bioavailability	Elimination	Volume of
			administration	approved	pregnancy		half-life	distribution
				indication	category		(days)	
Adalimumab	ΤΝFα	Human ^a	SC	IBD, RA ^d , psoriasis,	В	64%	14	4.7–6 L
(<u>AbbVie, 2013</u>)				ankylosing spondylitis				
		TT : 1h			D	76.00%	14	<u> </u>
Certolizumab pegol	ΙΝΓα	Humanized	SC	IBD	В	/6-88%	14	6-8 L
(<u>OBC, 2015</u>)								
Golimumah	ΤΝΕα	Human ^a	SC	LIC RA psoriatic	B	53%	14	58-126
	IIII u	Tuman	50	arthritis, ankylosing	D	5570		ml/kg
(,)				spondylitis				
Infliximab (<u>Janssen</u> ,	ΤΝΓα	Chimeric ^c	IV	IBD, RA, psoriasis,	В	-	7–12	3–6 L
<u>2013</u>)				ankylosing spondylitis				
Natalizumab	α4-	Humanized ^b	IV	CD, multiple sclerosis	С	-	3–17	~5 L
(<u>Biogen, 2013</u>)	integrin							

Stone RH, Hong J, Jeong H. Pharmacokinetics of monoclonal antibodies used for inflammatory bowel diseases in pregnant women. J Clin Toxicol 2014; 4(4): 209

Drug Name	Target	Source	Route of	FDA-	FDA	Bioavailability	Elimination	Volume of
			administration	approved	pregnancy		half-life	distribution
				indication	category		(days)	
Adalimumab	ΤΝFα	Human ^a	SC	IBD, RA ^{<u>d</u>} , psoriasis,	В	64%	14	4.7–6 L
(<u>AbbVie, 2013</u>)				ankylosing spondylitis				
		TT : 1h	22	IDD.	D	76.00%	1.4	(0 I
Certolizumab pegol	ΤΝΓα	Humanized	sc	IBD	В	76-88%	14	6–8 L
(<u>OBC, 2015</u>)								
Golimumah	TNEa	Humana	8C	LIC PA provintic	B	53%	14	58 126
(Janssen 2014)	INIU		50	arthritis ankylosing	D	5570	14	-120 ml/kσ
(<u>sunssen, 2011</u>)				spondylitis				iiii/itg
Infliximab (Janssen	ΤΝΓα	Chimeric ^c	IV	IBD. RA. psoriasis	В	-	7–12	3-6 L
2013)		Children	1	ankylosing spondylitis	D		/ 12	5 0 1
Natalizumah	~1	Humonizedb	IV/	CD multiple colonosis	C		2 17	51
(Biogen 2013)	u4-	numanized	IV	CD, multiple scierosis		-	5-17	~J L
(<u>Diogen, 2015</u>)	megrin							

Stone RH, Hong J, Jeong H. Pharmacokinetics of monoclonal antibodies used for inflammatory bowel diseases in pregnant women. J Clin Toxicol 2014; 4(4): 209

AP&T Alimentary Pharmacology and Therapeutics

The effects of pregnancy on the pharmacokinetics of infliximab and adalimumab in inflammatory bowel disease

C. H. Seow^{*,†} (D, Y. Leung^{*}, N. Vande Casteele[‡], E. Ehteshami Afshar^{*}, D. Tanyingoh^{*}, G. Bindra^{*}, M. J. Stewart^{*}, P. L. Beck^{*}, G. G. Kaplan^{*,†} (D, S. Ghosh^{*} & R. Panaccione^{*}

Median adalimumab concentrations per trimester

Seow CH, Leung Y, Casteele NV et al. The effects of pregnancy on the pharmacokinetics of infliximab and adalimumab in inflammatory bowel disease. Aliment Pharmacol Ther 2017;45:1329–1338

Grisic AM, Dorn-Rasmussen M, Ungar B et al. Infliximab clearance decreases in the second and third trimesters of pregnancy in inflammatory bowel disease. United European Gastroentrol J 2021; 9(1): 91-101.

Elimination of Biologics

Elimination of monoclonal antibodies

FcRn- and target-mediated elimination pathways

 Renal excretion and hepatic metabolism are not primarily involved in elimination of mAbs

The large size of mAbs prevents excretion into the urine

Clearance of Infliximab during pregnancy

ORIGINAL ARTICLE

uegjournal WILEY

Infliximab clearance decreases in the second and third trimesters of pregnancy in inflammatory bowel disease

Ana-Marija Grišić^{1,2} | Maria Dorn-Rasmussen³ | Bella Ungar⁴ | Jørn Brynskov³ | Johan F. K. F. Ilvemark³ | Nils Bolstad⁵ | David J. Warren⁵ | Mark A. Ainsworth³ | Wilhelm Huisinga⁶ | Shomron Ben-Horin⁴ | Charlotte Kloft¹ | Casper Steenholdt³ ©

Grisic AM, Dorn-Rasmussen M, Ungar B et al. Infliximab clearance decreases in the second and third trimesters of pregnancy in inflammatory bowel disease. United European Gastroentrol J 2021; 9(1): 91-101.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Eculizumab in Pregnant Patients with Paroxysmal Nocturnal Hemoglobinuria

Richard J. Kelly, M.B., Ch.B., Ph.D., Britta Höchsmann, M.D., Jeff Szer, M.B., B.S.,
Austin Kulasekararaj, F.R.C.Path., Sophie de Guibert, M.D., Alexander Röth, M.D.,
Ilene C. Weitz, M.D., Elina Armstrong, M.D., Ph.D., Antonio M. Risitano, M.D., Ph.D.,
Christopher J. Patriquin, M.D., Louis Terriou, M.D., Petra Muus, M.D., Ph.D.,
Anita Hill, M.B., Ch.B., Ph.D., Michelle P. Turner, M.S., Hubert Schrezenmeier, M.D.,
and Regis Peffault de Latour, M.D., Ph.D.

Effect of anti-drug antibodies (ADA) on the PK of Biologics

ADA status in Elimination of monoclonal

Grisic AM, Dorn-Rasmussen M, Ungar B et al. Infliximab clearance decreases in the second and third trimesters of pregnancy in inflammatory bowel disease. United European Gastroentrol J 2021; 9(1): 91-101.

Summary PK of monoclonal antibodies

Stone RH, Hong J, Jeong H. Pharmacokinetics of monoclonal antibodies used for inflammatory bowel diseases in pregnant women. J Clin Toxicol 2014; 4(4): 209

Net drug plasma concentration during A JOHNS HOPKINS pregnancy

- Complex relationship (net effect) between so many PK variables
 - Fraction of drug absorbed
 - The physicochemical properties governing diffusion across membranes
 - Drug bioavailability
 - Protein binding
 - Unbound fractions of drug
 - Volume of distribution
 - Intrinsic organ clearance
 - Organ extraction ratio (hepatic or renal)
 - Drug-drug interactions
 - Pharmacogenomic, pharmacomicrobiomic, and
 - Several other variables.

Areas for continuing research

- Drug transporters
- Free (unbound) fraction of drugs
- Pharmacodynamic data
- Pharmacogenomic data
- Pharmacomicrobiomic data
- PK of newer drugs
- Understanding the placenta

Thank you