In vitro approaches to understanding supersaturation and precipitation of weak bases and enabling formulations

Dr. Edmund Kostewicz
Institute of Pharmaceutical Technology
Goethe University, Frankfurt
Germany
Overview

• Why do we need to consider the supersaturation and precipitation characteristics for enabling formulations and weak bases

• Which experimental parameters are needed in an in vitro model.

• Presentation of different small and full scale in vitro models

• Limitation of the in vitro models and why PBPK model can improve translating the in vitro findings to an in vivo setting

• Guidance for the use of the different models:
 – OrBiTo decision tree (IR formulations)
Considerations for poorly soluble drugs

- Many drug candidates are poorly soluble which can result in low and variable absorption
- Supersaturation of the drug in the GI tract is an option to overcome solubility limitations to improve bioavailability
 - salts, co-crystals, solid dispersions etc.
 - pH gradient between stomach and duodenum may induce supersaturation for basic drugs
- Drug in supersaturated state is thermodynamically unstable leading to precipitation in the GI tract
 - different excipients can have a significant effect on the degree of supersaturation and also how long precipitation can be prolonged
- The supersaturation and precipitation behaviour of the drug/formulation needs to be evaluated
Parameters influencing supersaturation and precipitation

Supersaturation & Precipitation

Physicochemical Properties
- solubility
- Lipophilicity (Log P, Log D)
- pH-dependent solubility (pKa-values)
- Solid state (amorph, crystalline)

GI Physiology
- volumes
- pH-values
- viscosity
- temperature
- gastric emptying
- bile salts
- hydrodynamics

Other factors
- particles
- food
- drinks
- medication
- diseases

Formulation
- particle size
- disintegration
- dissolution
- excipients
Parameters influencing supersaturation and precipitation

<table>
<thead>
<tr>
<th>Physicochemical Properties</th>
<th>GI Physiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>solubility</td>
<td>volumes</td>
</tr>
<tr>
<td>Lipophilicity \rightarrow absorption (Log P, Log D)</td>
<td>pH-values</td>
</tr>
<tr>
<td>pH-dependent solubility (pK_a-values)</td>
<td>viscosity</td>
</tr>
<tr>
<td>Solid state</td>
<td>temperature</td>
</tr>
<tr>
<td>particles</td>
<td>gastric emptying</td>
</tr>
<tr>
<td>food</td>
<td>disintegration</td>
</tr>
<tr>
<td>drinks</td>
<td>dissolution</td>
</tr>
<tr>
<td>medication</td>
<td>excipients</td>
</tr>
<tr>
<td>diseases</td>
<td></td>
</tr>
</tbody>
</table>

Challenging to predict based on physicochemical properties of API alone
Parameters influencing supersaturation and precipitation

Physicochemical Properties
- solubility
- Lipophilicity \rightarrow absorption (Log P, Log D)
- pH-dependent solubility
- Solid state (amorph, crystalline)
- Lipophilicity \rightarrow absorption (Log P, Log D)

GI Physiology
- volumes
- pH-values
- viscosity
- temperature
- gastric emptying
- disintegration
- dissolution
- excipients
- diseases

Other factors
- particles
- food
- drinks
- medication

For reliable prediction, data is needed from dynamic biorelevant in vitro tools.
Parameters influencing supersaturation and precipitation

- **Physicochemical Properties**
 - solubility
 - Lipophilicity
 - pH-dependent solubility (pKa-values)
 - Solid state (amorph, crystalline)
 - Permeability

- **GI Physiology**
 - volumes
 - pH-values
 - viscosity
 - temperature
 - gastric emptying
 - bile salts
 - hydrodynamics

- **Other factors**
 - particles
 - food
 - drinks
 - medication
 - diseases

- **Formulation**
 - particle size
 - disintegration
 - dissolution
 - excipients

Supersaturation & Precipitation
In vivo assessment of GI supersaturation and precipitation

- Limited data available evaluating GI luminal supersaturation and precipitation and its impact on oral absorption
- Indirect assessment using plasma profiles
- Gastrointestinal concentration profiling – “Intubation method”
 - introduction of catheter and positioning along proximal intestine to allow drug administration and concurrent collection of intestinal fluids
 - provides insight into luminal supersaturation and precipitation assessment
 - not a viable option for routine use during formulation development
→ requirement for predictive tool

Psachoulias, Pharm Res, 2012, 29: 3486
In vitro evaluation of GI supersaturation and precipitation

- Important to assess supersaturation and precipitation not only during early development stages, but also before first in human studies and in later stages in formulation development.

- For reliable predicting, in vitro tools need to capture the relevant GI physiological parameters.

- A range of in vitro tools are currently available to assess supersaturation and precipitation.

Small Scale

Large Scale
Small scale methods

Facilitate use of small quantities of API during early stages of development with limited material and for the evaluation of prototype formulations

1. Single media tests
2. Models with medium/pH shift
3. Two-stage tests
4. Methods addressing intestinal absorption
Small scale methods – single media tests

• Potential drug precipitation can be inferred from comparing solubility in simulated gastric with intestinal media (e.g. dose/solubility ratio)

• Comparison of ketoconazole solubility in biorelevant media
 – SGF (418 mg/ml)² (D/S 0.72 ml) versus FaSSIF (0.017 mg/ml)¹ (D/S 17.6 L)
 – In vivo finding suggest precipitation (up to 16% at 300 mg)³

• Several high-throughput methods available utilizing 96 well plate with either optical imaging or turbidimetric spectroscopic methods
 – sample applied by solvent casting (removal of solvent) or as stock solution (e.g. DMSO, PEG400) with potential addition of a particular medium

• Chandran utilized high-throughput spectrophotometric approach for evaluating precipitation inhibition for solubilized formulations⁴
 – 17β-estradiol dissolved in various excipients (PEG400, PVP, TPGS) and aliquot added to 96-well together with deionized water and absorbance at 500 nm
 – Absorbance increase as a function of time to reveal precipitation

¹Markopoulos, EJPB, 2015,93:173; ²Alsenz, JPS, 2007, 96:1748
Small scale methods – Medium (solvent) shift

Use of solvent shift (DMSO stock to a medium) to investigate supersaturation and precipitation

- Yamashita1 prepared concentrated drug (ITZ) in DMSO solutions, diluted with FaSSIF in 96 well tray and used HPLC/UV to evaluate precipitation and precipitation inhibitors
- Petrusevska2 utilized light scattering (nephelometer) and or turbidity (UV plate reader at 500 nm) in 96 well plate to evaluate potential of precipitation inhibitors (eg. for dipyridamole and fenofibrate from DMSO stocks in buffer containing various excipient concentrations
- \(\mu\text{Diss Profiler}TM \) (Pion) commercially available automated device using UV fibre optics to obtain real-time information on solubility and dissolution (including supersaturation and precipitation)
 - Palmlund3 setup standardised method where 200 \(\mu\text{L} \) DMSO stock added to 10 ml FaSSIF3 in mini-vessels with micro-paddles and in situ baseline UV spectrum for 60 min
 - Shift in baseline UV spectrum infering precipitation (e.g.. Albendazole, aprepitant, fenofibrate..)

1Yamashita, Int J Pharm, 2011, 419: 170; 2Petrusevska, EJPB, 2013, 85:1148; 3Palmlund, JPS, 2016, 105:3021
Small scale methods – Medium and pH shifts

Experimental methods enabling pH to be altered or the transfer of drug from the stomach to intestine to be simulated

• Klein\(^1\) evaluated the transfer of SFG to FaSSIF/FeSSIF using either a 96-well plate system (30 µl \(\rightarrow\) 170 µl) or a mini-paddle device (10 ml \(\rightarrow\) 40 ml) for both itraconazole and tamoxifen
 – both methods showed consistent results for no precipitation for tamoxifen and significant precipitation (90%) for itraconazole

• Sirius T3 instrument (Pion Inc.) is an automated titration system utilizing UV fibre optic probe to obtain real-time drug concentration measurements
 – drug concentration profile as a function of pH\(^2\) (e.g. 1.2 up to 7.2) or through the addition of intestinal media to stomach media\(^3\) to show precipitation or lack thereof for different poorly soluble weak bases (e.g. DPM)

\(^3\)Jakubiak, Mol Pharm 2016; 13:586
Evaluate impact of intestinal absorption – „Biphasic“ system

• Given the impact of absorption on resulting luminal drug concentrations, methods have been used to include an “absorption” step to facilitate drug partitioning from aqueous donor to organic layer (i.e. sink conditions)
 – two immiscible phases comprising of a lower aqueous (dissolution) and upper organic phase (drug partitioning)
• Solvents used in the past include octanol, cyclohexane/octanol, chloroform, nonanol, nonanol/cyclohexane, hexane\(^1\)
 – octanol used most often given its more suitable characteristics
 ▪ completely immiscible and less dense than water, reduced volatility at 37°C

\(^1\)Pestieau, EJPS, 2017 10: 203
Biphasic“ system – miniscale biphasic dissolution model with pH shift (miBldi-pH)

• small scale biphasic dissolution test utilizing a pH shift to evaluate drug release and precipitation

• Frank\(^1\) used the method to predict \textit{in vivo} precipitation for different weak bases (e.g. DPM).
 – miniaturized USP II apparatus (50 ml media covered with 15 ml octanol), pH elevated in media, analysis using online UV spectroscopy
 – precipitation extent (35%) closer to \textit{in vivo} (7%) than single phase (90%)

• Absorptive sink dependant upon the drugs partition coefficient between dissolution medium and organic solvent, and what is the influence of drug contact with solvent on dissolution
 – whilst absorption captured, need to consider drugs \textit{in vivo} absorption behaviour for interpretation of findings

\(^1\)Frank EJPS, 2014; 61:32
Evaluate impact of intestinal absorption – „Biphasic“ system

• InForm (Pion) is a commercially available apparatus for conducting biphasic dissolution experiments
 - fibre optic UV probe to measure “real-life” concentration and potentiometric pH probe to facilitate pH control
 - O’Dwyer recently utilized this method to evaluate supersaturation and precipitation for DPM and KTZ by beginning experiment in gastric media followed by subsequent addition of conc. FaSSIF-V2 and decanol to act as absorption sink
 - experimental precipitation rates and critical supersaturation concentration data for dipyridamole and ketoconazole provided good in vivo simulation using Simcyp

O’Dwyer, APS PharmSci 2019
Full-scale methods to evaluate supersaturation and precipitation

- These methods take into account relevant GI fluid volumes which enable the evaluation of the drug product/formulation at clinically relevant doses after oral administration
- A range of equipment/models available based on compendial UPS dissolution and non-compendial apparatuses

1. Transfer model
2. Artificial Stomach Duodenal
3. Gastrointestinal simulator
4. BioGIT
5. Artificial membrane insert system
6. Simplified “two-stage” method
Closed system “Transfer model”

- One of the first attempts simulating the transfer of drug from the stomach to intestine using standard dissolution equipment\(^1\)
 - Importance of hydrodynamics, transfer rates and media composition (fasting and fed on supersaturation and precipitation)
- Updated by Ruff\(^2\) in 2017 to include newer media composition, physiologically relevant GI volumes and 1st order gastric emptying rates, disintegration and dissolution
- Concentration time profiles in the acceptor compartment enable precipitation rates to be established and comparison with solubility to establish degree of supersaturation
 - HPLC, variation with inline Raman spectroscopy to monitor precipitation\(^3\)
- Since a closed system, precipitation overestimated overcome by coupling to PBPK modelling

\(^{1}\)Kostewicz JPP 2004; 56:43, \(^{2}\)Ruff EJPS 2017; 100:42, \(^{3}\)Arnold JPP, 2004; 63:333
Transfer model – coupling to PBPK modeling

To circumnavigate lack of absorption compartment in TM model and to take into account other physiological variables, *in vitro* data coupled to a PBPK model

Ruff et al. coupled *in vitro* data for Nizoral® (200mg ketoconazole) with Stella® model, plasma KTZ profile was accurately simulated¹

- whilst precipitation *in vitro*, given good permeability, CSC not achieved and hence no precipitation

In vitro transfer model data for Eskazole® (400 mg albendazole) simulated plasma profile better than just using dissolution behaviour using GastroPlus²

¹Ruff EJPS 2017; 100:42, ²Pettarin 3rd European Conf. Pharm, March 2019, Bologna
Open system – Artificial Stomach Duodenal (ASD)

- Transfer from stomach to duodenum chamber with additional input of stomach and intestinal “secretions” and out-flow from the intestinal chambers
- Continuous evaluation of concentration in both chambers and an investigation of the % solid fraction in duodenal chamber
 - continuous real-time monitoring by pH and UV probe
- Enables dissolution and precipitation to be evaluated
 - success in simulating the relative bioavailability of several drugs (e.g. Carbamazepine, ketoconazole & posaconazole)1,2

1Carino JPS 2006; 95:116; 2Butler EJPB 2019; 136:70
Open system – Biorelevant GI Transfer (BioGIT)

• Given impact on intestinal absorption on in vivo behaviour, sink conditions can be achieved in vitro by altering flow rates in the intestinal compartment

• BioGIT\(^1\) comprises of gastric, duodenal and reservoir compartment containing biorelevant media
 – First-order gastric emptying, duodenal compartment renewed with fresh medium every 15 minutes (sink)

• Enables the prediction of intraluminal drug concentrations and fraction precipitated which have shown a high degree of similarity to in vivo luminal concentrations
 – Good correlation for itraconazole, posaconazole, ketoconazole, albendazole, nifedipine\(^1,2\) for predicting fraction precipitated and luminal concentrations without the need for PBPK modeling

\(^1\)Kourentas IJP 2016; 515: 352, \(^2\)Butler EJPB 2019; 136:70
Open system – Gastrointestinal Simulator (GIS)

- Consists of three chambers simulating the stomach, duodenum and jejunum each containing biorelevant media reflecting the luminal conditions in each.
- Relevant flow rates between the compartments (e.g. first order), appropriate volumes and pH with elevated paddle speed to simulate gastric contractions.

- Dissolution and precipitation behaviour evaluated in a number of studies:
 - Matsui et al. demonstrated success in predicting supersaturation and precipitation for dipyridamol & fluconazole as function of pH and consistent with vivo DDI study with fluconazol\(^2\)
 - Tsume et al.\(^3\) used GIS to investigate both dipyridamol and ketoconazole, precipitation observed in vitro but given limited in vivo precipitation, over estimated.

\(^1\)Bermejo Pharmacuetics 2019 11:122; \(^2\)Matsui Mol Pharm 2015 12:2418; \(^3\)Tsume EJPS 2017 102: 126
Integration of „absorption“ barrier

1. Motz1 utilization a **Caco-2 monolayer** to act as absorption „sink“ combined with an **USP IV apparatus**
 - Different dose and release characteristics of propanolol using combined dissolution and permeability
 - Influence of absorption on dissolution could be shown, linear dependency of absorption with dose
 - Experimental design biased towards maintenance of cell viability/integrity (Krebs buffer, sensitive to flow rates
 - limitations with using cell cultures: viability, variability, lower surface area

2. **Artificial membrane insert system (AMI)** proposed by Berben2, simulates passive absorption of drugs in intestine using a regenerated cellulose membrane
 - Interplay between absorption, superaturation and precipitation examined for loviride, posaconazole, itraconazole and fenofibrate as acidified suspension and enabling formulation demonstrated good correlation with luminal data

1Motz EJPB 2007; 66:286, 2Berben EJPS 2018;119: 219
Simple “two-stage” method

• Simplified transfer model experimental approach
 – **First stage:** drug placed into compartment simulating gastric conditions
 – **Second stage:** drug solution/dispersion is combined with intestinal media by addition of intestinal media to gastric media (or vice versa…)

• Various examples:
 – **USP QC** method for enteric dosage forms (USP Dissolution 711 – Method A & B)
 – “Dumping” test: predissolved drug in 250 ml FaSSGF and poured directly into 350/500 ml FaSSIF various non-supersaturating drugs (e.g. posaconazole) and supersaturating drugs (e.g. ketoconazole)
 - for non-supersaturating drugs, two-stage method gave similar results to transfer model whilst for supersaturating drugs results were different\(^1\)
 – “Dumping” test: Hansmann\(^2\) showed no difference in prediction success when coupling in vitro data from “dumping” versus transfer model in Simcyp\(^\circledR\) for non-supersaturating ciprofloxacin tablets

\(^1\)Ruff AAPS Orlando Florida 2015; \(^2\)Hansmann 2018 EJPB 122:186
Simple “two-stage” method

- Kambayashi1 showed “dumping” method (50 ml solution in 0.02N HCl “dumped” into 450 ml FaSSIF-V2)
 - able to predict duodenal precipitation for supersaturating DPM/KTZ when coupled with PBPK Stella® model

- Several examples showing usefulness of this simpler experimental setup for evaluating supersaturation and precipitation
 - API alone or in combination with various excipients, fast releasing formulations, and possibly limited to APIs showing a low degree supersaturation

1Kambayashi 2016; EJPB, 103:95
Coupling of *in vitro* data to PBPK modeling

- No single *in vitro* model considers all of the potential *in vivo* parameters that can influence supersaturation and precipitation
 - experimentally challenging to consider *in vivo* regional differences and variability in GI physiology (fluid volumes and composition, pH, transit times, hydrodynamics) and absorption

- Range of commercially available, open system and „build-your own“ platforms available
 - Simcyp® simulator, GastroPlus®, PK-Sim®, Stella®

- Commercial programs have evolved to enable an improved integration of experimental data collect from *in vitro* different models
 - SIVA toolkit in Simcyp facilitates the *in vitro* experimental data to be modeled and estimate the input parameters for *in vivo* simulations,
 - physiological system parameters to predict the changes along the GI tract
As part of the OrBiTo project, an experimental approach to evaluate the supersaturation and precipitation behaviour of different formulation types (IR, ER, DR) was generated (Andreas, 2018).

Example of decision tree in case for IR, weak base, fasting state, dose/solubility in FaSSIF >250 ml:
- combination of solubility, decision for either dissolution or supersaturation screening and in case of precipitation, two stage method is given

Andreas EJPB 2018; 130:207
Summary

• A range of small scale and large scale models to evaluate supersaturation and precipitation at different stages of drug development are available

• Significant progress has been made in making these tools more physiologically relevant, however, not all aspects having an influence on supersaturation and precipitation can be captured by the model
 – early stages “less critical” rather screening to evaluate the predisposition to precipitation and investigate formulation strategies
 – later stages, PBPK modelling is becoming more important for reliable in vivo prediction for absorption (physiological parameters, absorption)

• Models have been validated on a limited number of examples, further validation with a wider range of drug compounds with in vivo data, continued collaborative nature between different stakeholders (in vitro & in silico) and to provide a consensus for standardization of the in vitro/in silico methods
Any questions about....

In vitro approaches to understanding supersaturation and precipitation of weak bases and enabling formulations?