Objectives

• Identify regulations related to pharmacology/toxicology information in the Investigator’s Brochure (IB)
• Describe the types of nonclinical information in the IB
 – Pharmacology
 – Safety Pharmacology
 – Toxicology
 • General toxicology
 • Genetic toxicology
 • Other toxicology studies: Reproductive toxicity
• Discuss examples of nonclinical data in the IB
21 CFR 312
Investigational new drug application

• §312.55 Informing investigators.
 – (a) Before the investigation begins, a sponsor (other than a sponsor-investigator) shall give each participating clinical investigator an investigator brochure containing the information described in §312.23(a)(5).

• §312.23 IND content and format.
 – (a)(5) Investigator's brochure. If required under §312.55, a copy of the investigator's brochure, containing the following information:
 • (ii) A summary of the pharmacological and toxicological effects of the drug in animals and, to the extent known, in humans.
 • (iii) A summary of the pharmacokinetics and biological disposition of the drug in animals and, if known, in humans.

• §312.53 Selecting investigators and monitors.
 – (f) Has read and understands the information in the investigator's brochure, including the potential risks and side effects of the drug

• §312.42 Clinical holds and requests for modification.
 – (b)(iii) The investigator brochure is misleading, erroneous, or materially incomplete
Nonclinical information included in the IB

– Pharmacology
– Safety Pharmacology
– Toxicology
 • General toxicology
 • Genetic toxicology
 • Other toxicology studies
Pharmacology

- Used to define intended and unintended targets and/or effects
- Amount of information varies
 - Type of molecule (e.g. small molecule vs biologic)
 - Stage of drug development
 - Indication
How much attention to pay to the pharmacology?

• Drug not the first in class? Better idea of toxicities

• For biologics (e.g. an antibody): Which species best predicts toxicities in humans?

• Can explain some toxicities seen in animals: Exaggerated pharmacologic effects
Nonclinical information included in the IB

- Pharmacology
- Safety Pharmacology
- Toxicology
 - General toxicology
 - Genetic toxicology
 - Other toxicology studies
Safety pharmacology

• Cardiovascular
 – In vitro
 – In animals (dogs or monkeys)
• CNS (usually rodents)
• Respiratory (usually rodents)
Nonclinical information included in the IB

– Pharmacology
– Safety Pharmacology
– Toxicology
 • General toxicology
 • Genetic toxicology
 • Other toxicology studies
General toxicology

- Toxicology studies with the same route and schedule of administration as proposed in subjects:
 - Duration of nonclinical studies relative to clinical development described in the International Council for Harmonisation (ICH) guidance M3(R2)
 - Anticancer pharmaceuticals follow ICH S9
Purpose of these studies

- Determine whether conduct of the proposed clinical investigation is reasonably safe
- Determine an initial dose for clinical trials
- Help determine a stopping dose (if necessary)
- Identify potential dose limiting toxicities and inform clinical monitoring
- Assess potential toxicities that cannot be identified in clinical trials
Species commonly used

• Rodents
 – Rats
 – Mice

• Non Rodents
 – Beagle dogs
 – Cynomolgus monkeys
 – Rabbits

Species typically chosen based on availability of historical control data and pharmacological relevance
Toxicology studies for biologics

• Species should be pharmacologically relevant
• Safety evaluation normally includes two relevant species
• One relevant species may be sufficient if only one relevant species is identified or the biological activity is well understood
Toxicity information in the IB: Real examples

- Drug/Indication: Humanized IgG1 monoclonal antibody being developed for treatment of systemic amyloidosis
- Target (amyloid fibrils) not present in healthy animals (pivotal toxicology studies are conducted in healthy animals)
- How is toxicity assessed in the absence of a relevant species? What to monitor in patients?
Toxicity information in the IB: Real examples

- Drug/Indication: Microtubule inhibitor being developed for treatment of advanced solid tumors
- Produced irreversible optic nerve degeneration at mid and high doses in rat repeat-dose toxicology study
- Monitoring was increased (optic exams and imaging), and information was added to the protocol and informed consent
Toxicity information in the IB: Real examples

• Drug/Indication: Epigenetic targeting drugs being developed for treatment of solid tumors and hematologic malignancies
• Produced malignancies (lymphoma) in rat 3-month repeat-dose toxicology studies
• Secondary malignancy has also been observed in a clinical trial with one drug
• Considering patient population, information was added to the IB and informed consent
Toxicity information in the IB: Real examples

- Drug/Indication: Antibody-drug conjugate being developed for treatment of cancer
- Cynomolgus monkey was relevant species
- Findings in monkeys: Myelosuppression
- Findings in rats: Myelosuppression, severe hepatotoxicity (necrosis, increased liver enzymes)
- How much to worry about hepatotoxicity?
Toxicity information in the IB: Real examples

- Drug/Indication: Fusion protein to inhibit the complement pathway being developed for treatment of paroxysmal nocturnal hemoglobinuria (PNH)
- 100% homology to human protein sequence
- 60% homology to protein sequences in rat
- 90% homology to protein sequences in cynomolgus monkeys
- Deaths in rats and monkeys, due to immunogenicity
- Is immunogenicity relevant to humans?
General toxicology used to define the starting dose in humans

Should I worry about the starting dose?

• The FDA reviewed the nonclinical data in the investigational new drug application (IND) and agreed on the starting dose

• Be aware of toxicities

• Understand what the nonclinical data mean and how relevant they are
In general, animals are good predictors of toxicities in humans

• Signal transduction pathways, e.g. inhibition of growth pathways and hyperglycemia
• Infusion reaction to antisense oligonucleotide in monkeys reduced by slower infusion and lower maximum concentration (Cmax)
• Hematologic toxicities of cytotoxic drugs predicted by animal studies
Nonclinical information included in the IB

- Pharmacology
- Safety Pharmacology
- Toxicology
 - General toxicology
 - Genetic toxicology
 - Other toxicology studies
Genetic toxicology

• Concern about human exposures during drug development
• Results from carcinogenicity studies are generally not available until the time of product approval
• Genetic toxicology studies used as a surrogate for carcinogenicity during clinical trials
Types of genetic toxicology assays

• *In vitro*
 – Bacterial assay to detect mutations Ames Test - *Salmonella* and *E.coli*
 – An assay in mammalian cells to detect chromosomal damage
 • Chinese Hamster Ovary (CHO) cells
 • Mouse lymphoma cells

• *In vivo*
 – An assay in a rodent species to detect chromosomal damage to hematopoietic cells

• Other genotoxicity assays are available and may be conducted
Timeline for genetic toxicology

Relative to clinical development:

• Gene mutation assay for single dose clinical studies
• Add chromosomal damage study if multiple doses in clinical studies
• Complete battery conducted prior to phase 2
• For anticancer drugs, submit with marketing application
Worried about results of genetic toxicity studies?

• If review team made a decision that the trial is reasonably safe to proceed, either:
 – Negative results in genetic toxicology assays
 – Positive or likely/possibly positive (based on mechanism of action, other drugs in the same class, equivocal results)
 • Life-threatening indication/cancer? Genetic toxicology studies not needed until marketing application; short life-expectancy
 • Serious condition and no other therapy?
 • A single, sub-therapeutic dose in humans?
Nonclinical information included in the IB

- Pharmacology
- Safety Pharmacology
- Toxicology
 - General toxicology
 - Genetic toxicology
 - Other toxicology studies
Thalidomide-induced birth defects

• Thalidomide prescribed to pregnant women for nausea and insomnia; over 10,000 births with severe limb malformations
• Potent and relatively short time period between exposure and adverse effects
• Animals can provide information on potential reproductive toxicities in humans
 – Thalidomide-like limb abnormalities in monkeys are induced by thalidomide analogs
 – Hormonal agents (e.g. estrogen receptor agonists) and pregnancy loss
Development and reproductive toxicology

• Studies that cover fertility, embryo-fetal, and pre- and post-natal periods typically follow ICH M3(R2), S5(R3), S6(R1)

• For oncology indications, also consult S9 and the guidance Oncology Pharmaceuticals: Reproductive Toxicity Testing and Labeling Recommendations Guidance for Industry

• Considerations
 – Influence of patient population (e.g., women of child bearing potential, pregnant women, etc.)
 – Small molecule (standard protocols) vs. biotechnology derived pharmaceuticals (more case-by-case)
Nonclinical information included in the IB

- Pharmacology
- Safety Pharmacology
- Toxicology
 - General toxicology
 - Genetic toxicology
 - Other toxicology studies
Guidelines and Guidances

https://www.fda.gov/drugs/guidances-drugs/all-guidances-drugs

- S1 Carcinogenicity Studies
- S2 Genotoxicity Studies
- S3 Toxicokinetics and Pharmacokinetics
- S4 Toxicity Testing
- S5 Reproductive Toxicology
- S6 Biotechnological Products
- S7 Safety Pharmacology Studies
- S8 Immunotoxicology Studies
- S9 Nonclinical Evaluation for Anticancer Pharmaceuticals
- M3 Nonclinical Safety Studies for the conduct of Human Clinical Trials
- Oncology Pharmaceuticals: Reproductive Toxicity Testing and Labeling Recommendations Guidance for Industry
Thank You
Challenge Question

a) How many ICH topic categories are used for guidelines? b) What categories do M and S stand for? c) List one M guidance and one S guidance relevant to nonclinical information in the IB.