

Application of Virtual BE Trials to support formulation bridging

Claire Mackie

Antibody drug conjugate with four drug compounds linked to IgG immunoglobulin

Scientific Director, Biopharmaceutics FDA/M-CERSI Physiologically Based Biopharmaceutics Modeling, PBBM Best Scientific Practices to Drive Drug Product Quality: Latest Regulatory and Industry Perspectives Aug 31st 2023

Therapeutics Development & Supply (TDS)

Janssen Research & Development, LLC ©2023 JRD, LLC

Agenda

1 **VBE – Recap**

What could be covered under formulation 2 bridging?

3 Examples 1 & 2

4 **Points to consider**

VBE - Virtual Bioequivalence

Quick Recap

- BE is used to assess the comparison of relative bioavailability between two products containing the same API
- Usually assessed through a PK comparison in a clinical study (with clear guidelines and acceptance criteria)
- **V**BE is when BE is demonstrated using modelling and simulation in place of a clinical study
- Can save time and money I

Cetara.com/services Balance Health Centre

VBE - Virtual Bioequivalence

Areas of potential application

- BE studies are often performed in 3 main areas
 - Change in Manufacturing site (site switch)
 - Creating/introducing a new formulation
 - Introduction of a generic drug product
- Creating /introducing a new formulation can include studies to
 - Bridge between 2 formulations
 - Evaluating the Food effect
 - Evaluate any PPI effect (the CMC DDI ③)
 - Setting of Clinically Relevant Specifications

Cetara.com/services Springer link

VBE - Virtual Bioequivalence

Formulation Bridging

- Which APIs/DPs could qualify for formulation bridging
 - Depends on timing of bridge pre, post or during pivotal studies
 - Scientific and/or regulatory risk?
 - BCS I and BCS III API
 - Is the level of change covered through ICH M9?
- Type of bridging often done in Industry through clinical studies
 - Liquid to solid
 - Solid to solid (capsule to tablet)
 - Change in excipient (outside ICH M9 for BCS III or SUPAC BCS II/IV)
 - Change of platform (conventional to enabling)
 - Exploration of drug product CQAs

VBE – Virtual Bioequivalence

Example 1 – Mechanistic absorption modelling to assess the impact of drug product changes on the exposure of JNJ-X

- BCS II
- API in capsule for Ph 2 POC then acceleration to Phase 3 with a final tablet
- Tablet changes include:
 - API synthesis
 - Increase in lubricant
 - Change of non-functional coat
- Modelling used for internal drug product de-risking

Steps taken in model building

- Oral absorption model development
 - DS
 - DP
- PK Model Development
- Parameter Sensitivity Analysis
- Model Validation
 - Independent clinical datasets
- Model Application
 - Comparing different formulations through VBE

Model verification & VBE out come

	C _n	nax	AU	C _{inf}	BE
DP 1 vs DP 2	GMR	90% CI GMR	GMR	90% CI GMR	Criteria
	[-]	[-]	[-]	[-]	[-]
Study 1	0.95	0.86-1.04	1.03	0.91-1.16	0.8-1.25
Study 2	0.96	0.87-1.05	1.04	0.93-1.16	0.8-1.25
Study 3	0.95	0.85-1.05	1.00	0.90-1.10	0.8-1.25
Study 4	1.04	0.92-1.17	1.03	0.91-1.17	0.8-1.25
Study 5	1.05	0.94-1.17	1.02	0.92-1.13	0.8-1.25
Study 6	1.06	0.97-1.17	0.98	0.86-1.12	0.8-1.25
Study 7	0.93	0.84-1.03	1.03	0.92-1.14	0.8-1.25
Study 8	1.05	0.96-1.16	0.97	0.86-1.09	0.8-1.25
Study 9	0.98	0.89-1.08	0.98	0.87-1.09	0.8-1.25
Study 10	1.05	0.96-1.15	0.99	0.90-1.08	0.8-1.25
Mean	1.00		1.01		

•

•

VBE trials demonstrate both drug products @ dose A are predicted to be BE for both C_{max} and AUC.

A switch from DP 1 to DP2 is predicted to have no impact on absorption and exposure

VBE – Virtual Bioequivalence

Example 2 – Mechanistic absorption modelling to assess the impact of changes in API polymorph on the exposure of JNJ-Y

- BCS IV
- Immediate release tablet commercially available
- New crystalline form appeared (continuous process improvements)
- VBE used as part of a biopharmaceutical risk assessment to evaluate whether there could be any differences between the forms that may influence in vivo performance

Steps taken in model building

- Physiochemical characteristics of both APIs compared (in vitro)
- Model Development (using registered crystal form)
 - Phys chem properties
 - In vitro biopharmaceutical expts
 - Biorelevant dissolution
 - Verified using clinical PK data at various doses in fasted and fed conditions and a range of API PSDs
- In silico risk assessment of new crystal form using the above PBBM model and the biopharmaceutical properties of the new form

Model verification & VBE out come

Fasted- In silico	Geometi						
	Polymorph 2	Polymorph 1	GMR (90% CI)				
C _{max} (ng/ml)	3256	3408	95.5 (88.3- 103.4)				
AUC _{0-72h} (ng.h/ml)	26248	26239	96.4 (92.4- 100.5)				
Fed- In silico	Geometi	ric Mean					
Fed- In silico	Geometr Polymorph 2	ric Mean Polymorph 1	GMR (90% CI)				
Fed- In silico C _{max} (ng/ml)	Geometr Polymorph 2 2798	ric Mean Polymorph 1 3167	GMR (90% CI) 88.4 (80.9- 96.5)				

•

- •

VBE simulations did not indicate any changes in the oral bioavailability when comparing both forms.

A negative effect on the oral bioavailability and absorption rate would require a significantly slower physiology based in vitro dissolution

Confirmatory clinical study was performed testing 10,50 and 90% of the new form

All formulations are BE confirming the in silico assessment

VBE – Virtual Bioequivalence

Points to Consider

- Number of datasets available to verify/validate the initial model
- Appropriate population size for VBE (n=12, 24, 48 or based on clinical studies?)
- Number of studies to simulate (n=10, 50, 200?)
- Inclusion of inter and intra variability
 - Variability on C_{max} and AUC
 - Propagate intrasubject variability mechanistically (bottom up)
- When can VBE help in a program?
 - Timing in the program
 - Scientific (internal) or regulatory Q
 - If regulatory
 - timing of interaction
 - detail available
 - learn & confirm
 - global alignment

Acknowledgements

- Janssen Biopharm Team
 - Bram Schroyen
 - Frederic Van Dycke
 - Sumit Arora
 - Jens Ceulemans _
 - Eline Hermans _
 - Jef Stappaerts
 - Nico Holmstock
- Christophe Tistaert ۲
- Wendy Van Den Broeck ٠

This Photo by Unknown Author is licensed under CC BY-NC-ND

