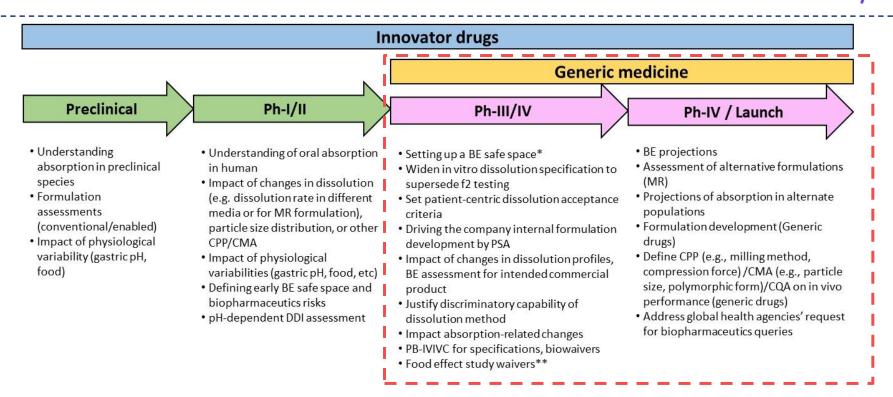
Application of PBBM in generic product development

Sivacharan Kollipara

Team Lead, Biopharmaceutics, Global Clinical Management Dr. Reddy's Laboratories, Hyderabad, India

Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives 29th – 31st Aug, 2023

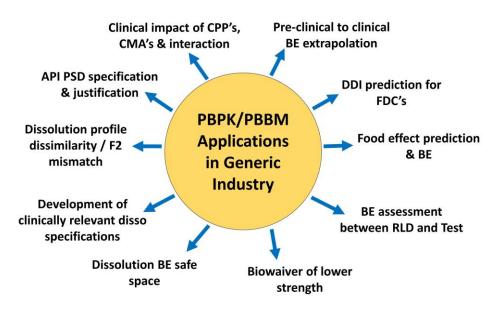

The opinions expressed herein are solely those of the presenter and do not represent statements or opinions of Dr. Reddy's Laboratories Ltd.

Agenda

- Biopharmaceutics driven generic product development
 - PBPK / PBBM Modeling
- PBBM modeling framework
 - General modeling workflow
 - Dissolution data integration
 - Bio-predictive vs QC dissolution media
- Industry Case studies
 - 1 # Critical Bioavailability Attributes (CBA's) evaluation
 - 2 # Impact of faster dissolution profiles on safety
 - 3 # Gender impact on pharmacokinetics
 - 4 # Discriminatory power of dissolution method (DDDPlus)
- Common regulatory queries received on PBBM modeling
- Conclusions, way forward

Applications of PBBM modeling drug product life cycle

• PBBM modeling in generic product development can be initiated as early as Ph-III/IV or Ph-IV/launch


Di W et al. Physiologically Based Pharmacokinetics Modeling in Biopharmaceutics: Case Studies for Establishing the Bioequivalence Safe Space for Innovator and Generic Drugs, Pharm Res. 2023, https://doi.org/10.1007/s11095-022-03319-6

Dr.Red

PBBM Modeling in generic product development

- In generic industry, PBBM modeling has various applications from product development to commercialization
- Such modeling based justifications and approaches are accepted by regulatory agencies such as USFDA, EMA in clinico-regulatory justifications
- A validated model can avoid potential clinical study thereby saving cost, time leading to faster development of generic medicines

PBBM Modeling – Regulatory guidance's

The Use of Physiologically Based Pharmacokinetic Analyses -**Biopharmaceutics** Applications for Oral Drug Product Development, Manufacturing Changes, and Controls Guidance for Industry

DRAFT GUIDANCE

EUROPEAN MEDICINES AGENCY SCIENCE MEDICINES HEALTH

13 December 2018 EMA/CHMP/458101/2016 Committee for Medicinal Products for Human Use (CHMP)

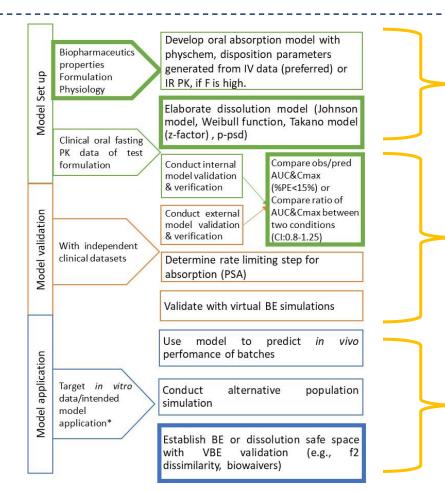
Guideline on the reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation

Draft agreed by Modelling and Simulation Working,	April 2016
Draft agreed by Modelling and Simulation Working C Draft agreed by Pharmacokinetics Working Adopted by CHMP for release for Start of public consult ENA, 2018	May 2016
Adopted by CHMP for release for the A	21 July 2016
Start of public consult	29 July 2016
End of const	31 January 2017
Agreed by M. Simulation Working Group	October 2018
Agreed by Pharmacokinetics Working Party	October 2018
Adopted by CHMP	13 December 2018
Date of coming into effect	> J Pha

pharmacokinetics, modelling, simulation, gualification, pred Keywords performance

Apart from USFDA, EMA, other agencies such as ANVISA, ٠ MEDSAFE, CDE are also open to PBBM submissions

Characterization and Application of Physiologically Based **Pharmacokinetic Models** in Risk Assessment


narm Sci. 2021 Feb;110(2):594-609. doi: 10.1016/j.xphs.2020.10.059. Epub 2020 Nov 3.

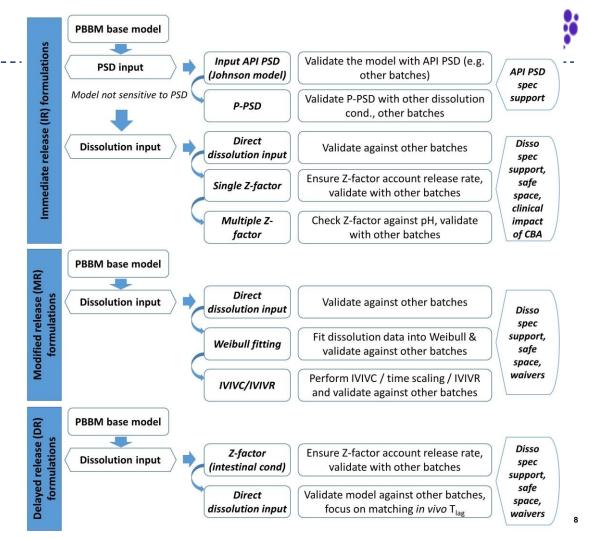
Applications of Physiologically Based Biopharmaceutics Modeling (PBBM) to Support Drug ANVISA, NIFDC, 2019 CHINA; PMDA, 2019 Product Quality: A Workshop Summary Report

- 13 Office of Advanced Evaluation with Electronic Data, Pharmaceuticals and Medi Agency (PMDA), Tokyo, Japan.
- 14 General Office of Medicines and Biological Products, Brazilian He (Anvisa), Brasilia, Brazil
- 15 National Institutes for Food and Drug Control (NIFDC), Beijin

PBBM model development – general workflow

- Literature data, experimental data, ADMET predicted data
- Adequate justification for all input parameters

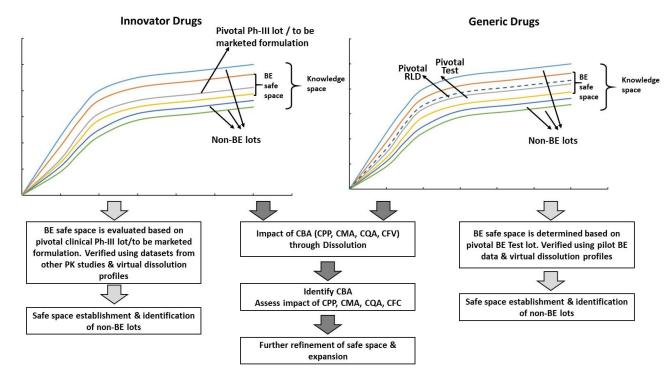
- Validation against literature data, in-house data, population bioequivalence and virtual simulations
- Population representative of clinical study, race, variability
- Validation against multiple studies to ensure model robustness


- Apply model for intended application, conduct virtual BE simulations
- Derive conclusions from physiological perspective

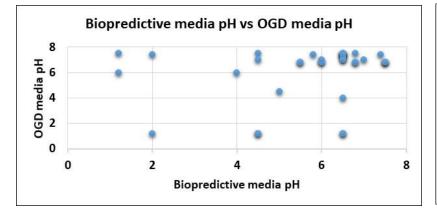
Di W et al. Physiologically Based Pharmacokinetics Modeling in Biopharmaceutics: Case Studies for Establishing the Bioequivalence Safe Space for Innovator and Generic Drugs, Pharm Res. 2023, https://doi.org/10.1007/s11095-022-03319-6

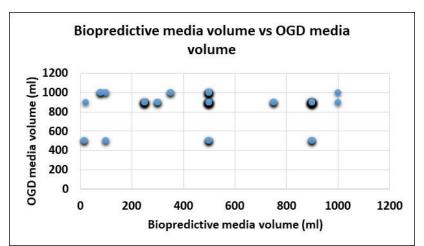
Dissolution data integration

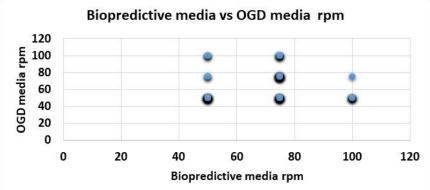
- Dissolution is critical input into PBBM
 models as it governs in vivo exposure
- Multiple models are available for IR, MR and DR formulations
 - IR: API PSD, direct dissolution
 input, z-factors
 - MR: direct dissolution input, Weibull function, IVIVC/IVIVR
 - DR: z-factor, direct dissolution input


Kollipara et al. Best Practices for Integration of Dissolution Data into Physiologically Based Biopharmaceutics Models (PBBM): A Biopharmaceutics Modeling Scientist Perspective. AAPS PharmSciTech, 2023, https://doi.org/10.1208/s12249-023-02521-y

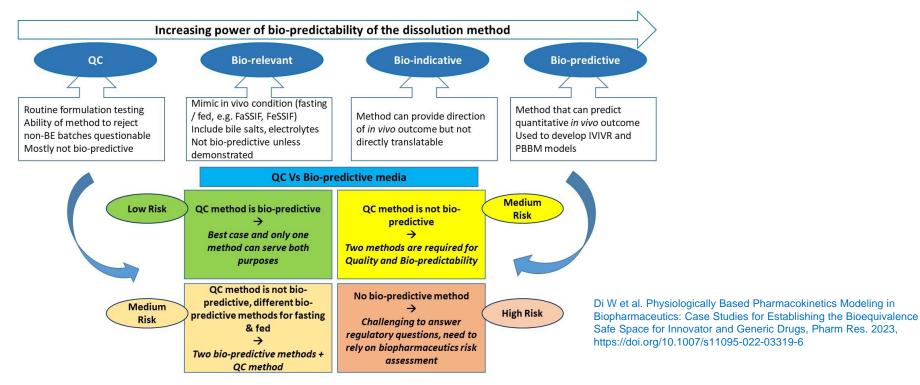
Dissolution safe space


 Dissolution / BE safe space is based on pivotal test BE lot and can further be verified using other clinical studies data and helps to identify non-BE batches




Di W et al. Physiologically Based Pharmacokinetics Modeling in Biopharmaceutics: Case Studies for Establishing the Bioequivalence Safe Space for Innovator and Generic Drugs, Pharm Res. 2023, https://doi.org/10.1007/s11095-022-03319-6

OGD (QC) Vs biopredictive Media


- There are distinct differences with respect to pH, rpm and media volume of biopredictive media's as compared to OGD media
- Typically higher pH, higher volumes and rpm are used in OGD media's whereas lower pH, volume and rpm are used in biopredictive media for discriminatory purpose
- Hence OGD media may not always be of bio-predictive and a separate method is required

Ahmed et al. Biopharmaceutics Risk Assessment—Connecting Critical Bioavailability Attributes with In Vitro, In Vivo Properties and Physiologically Based Biopharmaceutics Modeling to Enable Generic Regulatory Submissions. AAPS J. 2023, https://doi.org/10.1208/s12248-023-00837-y

QC Vs Bio-predictive dissolution media

- All regulatory queries or justifications are based on QC media, however it may not be bio-predictive
- Along with QC media, separate bio-predictive media can help to imbed quality into product development from manufacturability and clinical perspectives

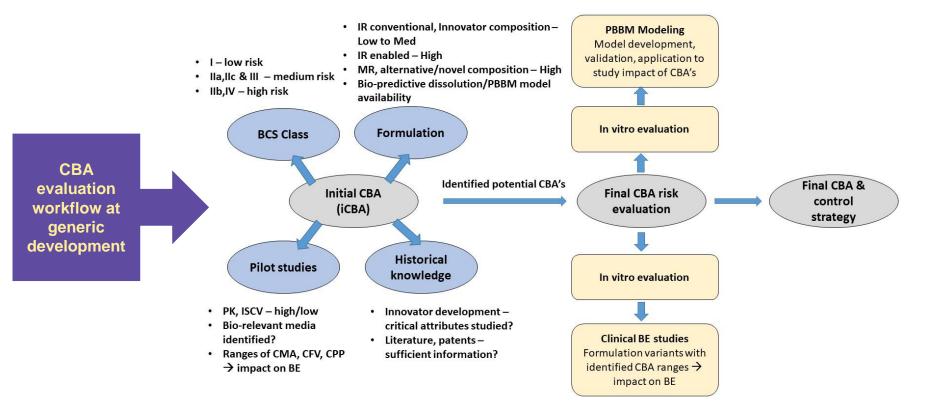
_ _ _ _ _ _ _ _

Case studies

CBA is a formulation or a process variable that is expected to critically impact the bioavailability of a drug product and can be product CMA, CFV or CPP

The AAPS Journal (2023) 25:77 https://doi.org/10.1208/s12248-023-00837-y

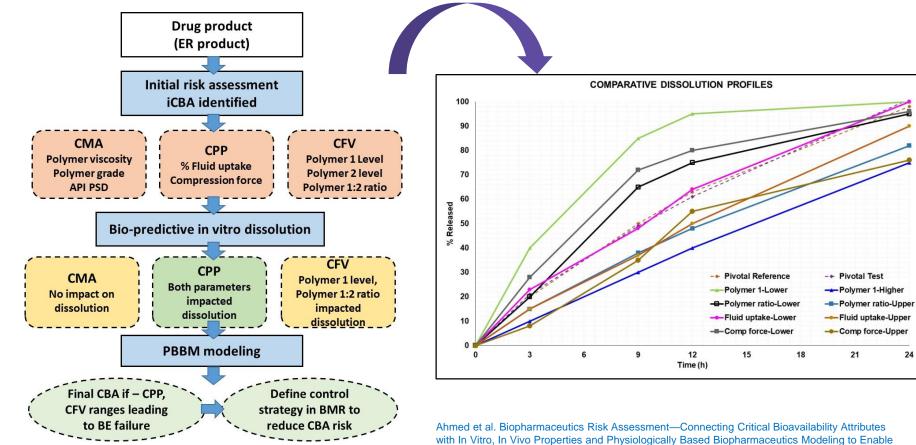
REVIEW ARTICLE



Biopharmaceutics Risk Assessment—Connecting Critical Bioavailability Attributes with *In Vitro, In Vivo* Properties and Physiologically Based Biopharmaceutics Modeling to Enable Generic Regulatory Submissions

Tausif Ahmed¹ · Sivacharan Kollipara¹ · Rajkumar Boddu¹ · Adithya Karthik Bhattiprolu¹

Case study#1: Critical Bioavailability Attributes (CBA) evaluation



Ahmed et al. Biopharmaceutics Risk Assessment—Connecting Critical Bioavailability Attributes with In Vitro, In Vivo Properties and Physiologically Based Biopharmaceutics Modeling to Enable Generic Regulatory Submissions. AAPS J. 2023, https://doi.org/10.1208/s12248-023-00837-y

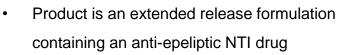
Case study#1: Critical Bioavailability Attributes (CBA) evaluation

24

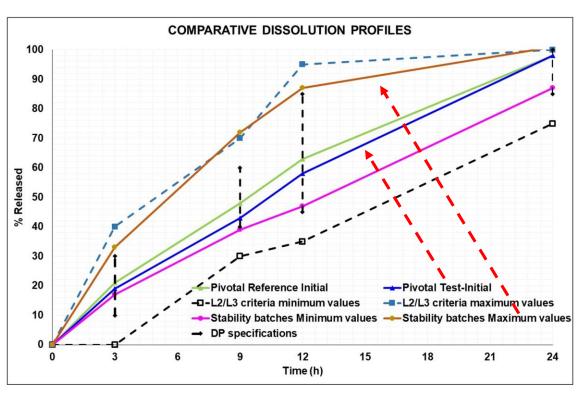
Case study#1: Critical Bioavailability Attributes (CBA) evaluation

Comparison	СВА	C _{max} T/R, 90% CI	AUC _{inf} T/R, 90% CI
Model Validation	Pivotal Test vs Pivotal RLD	97.91 (93.28-102.77) [104.4 (96.95-112.43)]*	98.29 (91.27-105.86) [99.81 (91.97-108.32)]*
	Low level polymer 1	125.4 (119.27-131.82)	111.9 (104.23-120.1)
	High level polymer 1	80.22 (75.78-84.93)	83.57 (77.09-90.6)
	High Polymer 1:2 ratio	83.69 (79.33-88.29)	88.18 (81.56-95.33)
Pivotal Test	Low Polymer 1:2 ratio	108.4 (103.09-113.89)	103 (95.79-110.77)
FIVOLAI TESL	Low fluid uptake	110.2 (104.83-115.9)	104.7 (97.42-112.45)
	High fluid uptake	95.85 (91.28-100.66)	99.02 (91.75-106.87)
	Low compression force	111.6 (106.09-117.46)	107.1 (99.47-115.24)
	High compression force	89.53 (84.84-94.49)	83.18 (77.05-89.79)
	Low level polymer 1	122.8 (117.54-128.23)	110 (102.8-117.66)
	High level polymer 1	78.55 (74.61-82.69)	82.14 (75.99-88.79)
	High Polymer 1:2 ratio	81.94 (78.14-85.93)	86.67 (80.41-93.42)
Pivotal RLD	Low Polymer 1:2 ratio	106.1 (101.59-110.79)	101.2 (94.46-108.53)
	Low fluid uptake	107.9 (103.3-112.74)	102.9 (96.07-110.17)
	High fluid uptake	93.85 (89.97-97.90)	97.33 (90.46-104.72)
	Low compression force	109.3 (104.54-114.27)	105.2 (98.09-112.91)
	High compression force	87.66 (83.56-91.96)	81.76 (75.97-87.98)

Ahmed et al. Biopharmaceutics Risk Assessment—Connecting Critical Bioavailability Attributes with In Vitro, In Vivo Properties and Physiologically Based Biopharmaceutics Modeling to Enable Generic Regulatory Submissions. AAPS J. 2023, https://doi.org/10.1208/s12248-023-00837-y

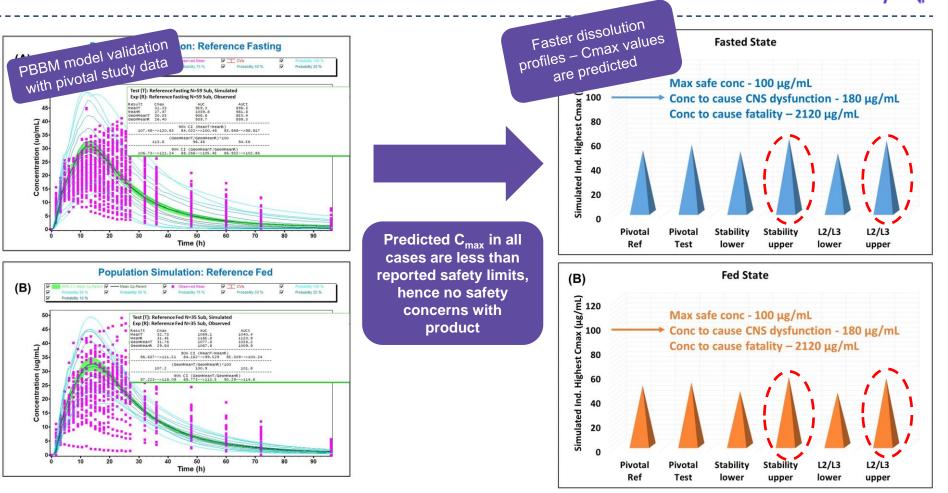


Final CBA Risk assessment


СВА	Probability (happened in the past)	(Impact on	everity in vitro / in vivo ormance)	Detectability (Disso or PBBM)		Final CBA assessment	Can it be controlled?	Control Strategy?
	Score	Score	Impact	Score	Detection			Challegy .
Polymer 1 viscosity	Low	Low	NA	High	NA	Low	Yes	Specification
Polymer 1 grade	Low	Low	NA	High	NA	Low	Yes	Specification
API PSD	Low	Low	NA	High	Dissolution	Low	Yes	Specification
Polymer 1 level	Low	High	In vitro & In vivo (PBBM)	High	Dissolution, PBBM	Low	Yes	BMR
Polymer 2 level	Low	Medium	NA	High	Dissolution	Low	Yes	BMR
Polymer 1:2 ratio	Low	High	In vitro & In vivo (PBBM)	High	Dissolution, PBBM	Low	Yes	BMR
% Fluid uptake	Low	High	In vitro & In vivo (PBBM)	High	Dissolution, PBBM	Low	Yes	BMR
Compression force	Low	High	In vitro & In vivo (PBBM)	High	Dissolution, PBBM	Low	Yes	BMR

Ahmed et al. Biopharmaceutics Risk Assessment—Connecting Critical Bioavailability Attributes with In Vitro, In Vivo Properties and Physiologically Based Biopharmaceutics Modeling to Enable Generic Regulatory Submissions. AAPS J. 2023, https://doi.org/10.1208/s12248-023-00837-y

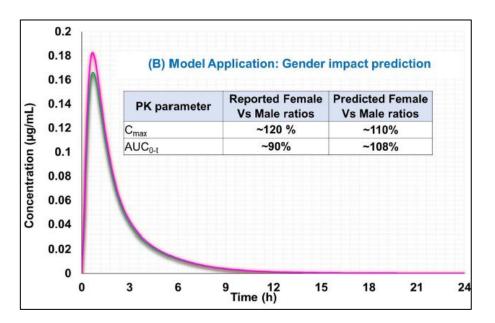
Case study#2: Impact of faster dissolution profiles on safety of NTI product



- Product exhibited faster dissolution profiles during stability
- Agency asked to evaluate impact of faster dissolution profiles on safety
- Along with stability profiles, impact on extreme boundaries of dissolution (i.e. at specification levels) were also evaluated

Dr.Redd

Case study#2: Impact of faster dissolution profiles on safety of NTI product

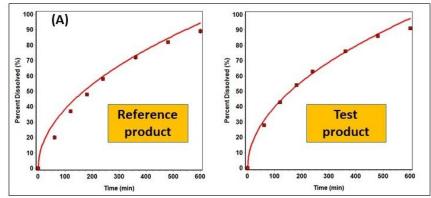


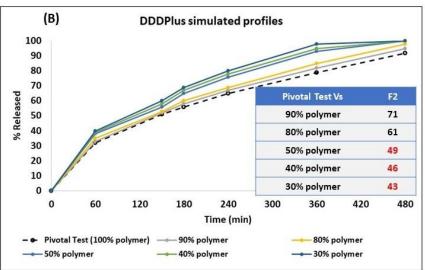
Dr.Reddy's

Case study#3: Gender impact evaluation with PBPK modeling

- For IR product containing BCS Class II molecule, the following regulatory query has been received:
- Only males were included in fasting and fed bioequivalence studies. As product is intended for both sexes, provide a scientific justification that BE results in male can be extrapolated to entire population consisting of both sexes.
- Socio-cultural reasons in India, it may not be possible to include equal number of female subjects in BE studies
- PBPK model was utilized to assess impact of gender on pharmacokinetics of the product
- Enzyme, transporter kinetics were incorporated and thorough validation has been performed against pivotal study
- Further, exposures in females were predicted and compared against male population

The model predicted female/male exposures inline with literature, justified absence of impact of gender on bioequivalence


Boddu et al. Power of integrating PBPK with PBBM (PBPK-BM): a single model predicting food effect, gender impact, drug-drug interactions and bioequivalence in fasting & fed conditions. Xenobiotica. 2023. https://doi.org/10.1080/00498254.2023.2238048


Case study#4: Discriminatory power of dissolution method with DDDPlus

- Drug product contains BCS III API at drug load of 60%
- No discrimination has been observed in QC media and hence agency asked to justify discriminatory power of dissolution method
- Due to high solubility nature of API and high drug load, it was not possible to demonstrate discrimination
- Practically it was not possible to manufacture batches with significantly lower or higher polymer
- DDDPlus was used to demonstrate discrimination / f2 failure and edge of failures have been identified
- Concluded that media is discriminatory but because of high soluble nature and high drug load, discrimination is not clearly evident

Ahmed et al. Biopharmaceutics Risk Assessment—Connecting Critical Bioavailability Attributes with In Vitro, In Vivo Properties and Physiologically Based Biopharmaceutics Modeling to Enable Generic Regulatory Submissions. AAPS J. 2023, https://doi.org/10.1208/s12248-023-00837-y

Common regulatory queries on PBBM justifications

 Query / concern	Probable solution
Justification / optimization performed for model inputs (e.g. Peff)	Experimental or literature support for model parameters PSA to demonstrate optimized value, details about optimization algorithm used
Z-factor for dissolution data input	Inherent issues of z-factor, demonstrate calculation method – solubility, time points, fit. Demonstrate z-factor in relation to absorption dissolution curves
Dissolution method: bio-relevance (QC), ability to reject non-BE batches	Develop parallel bio-predictive media, may be difficult for IR formulations Pilot BE data (e.g. failed) helps to show method relevancy
Mechanistic framework of model (e.g. ADME process)	PBPK can be adapted, mass-balance diagram in justification can help Demonstrating first pass effect, model's ability to capture bioavailability
Consideration of CBA's (e.g. CPP, CMA, CQA, CFV) in the model	Follow CBA evaluation workflow, include product quality attributes in the model and provide justification
Validation against failed BE data	Validation against pilot BE data, especially failed BE
Totality of evidence	Include biopharmaceutics risk assessment along with PBBM as appropriate
Different release rates and corresponding IVIVC	Ideal to have BE against different polymers and release rates
Discriminatory power of the QC media	Use DDDPlus to identify excipient ranges that can result in f2 mismatch (works in cases where dissolution method is not sensitive to formulation changes)
Gender impact in BE studies	Performing modeling with male, female physiologies and correlation with literature

Conclusions

- PBBM modeling has demonstrated applications in both generic and innovator domain
- Apart from USFDA and EMA, other agencies such as ANVISA, MEDSAFE, CDE open to modeling based justifications
- For generics, PBBM modeling has clearly demonstrated its value to avoid BE studies in cases of dissolution specifications justification, f2 mismatch, lower strength biowaivers etc
- Focus areas of PBBM modeling:
 - Bio-predictive ability of QC media
 - Regulatory justifications: mechanistic frame work, ability to predict failed BE data, dissolution method discriminatory power
 - Upcoming areas: waiver of fed studies and multiple dose steady state studies
- CBA's evaluation framework can be utilized by generic companies to facilitate regulatory submissions. PBBM modeling also can enable CBA's evaluation through creation of safe space
- Overall, PBBM modeling is increasingly being recognized, regulatory agencies are open to such submissions, knowledge sharing mainly in terms of regulatory justifications is required across academia, industry and agency

Acknowledgements

- Dr. Tausif Ahmed and Biopharmaceutics team at Global Clinical Management (GCM) group at DRL
- Dr. Reddy's Management for providing all infrastructure and support
- All other CFTs, collaborators and Regulator's who have contributed to the data generation/feedback for these case studies
- Organizing committee for giving me this opportunity

References

- Wu D et al. Physiologically Based Pharmacokinetics Modeling in Biopharmaceutics: Case Studies for Establishing the Bioequivalence Safe Space for Innovator and Generic Drugs, Pharm. Res. doi: 10.1007/s11095-022-03319-6
- Kollipara S et al. Best Practices for Integration of Dissolution Data into Physiologically Based Biopharmaceutics Models (PBBM): A Biopharmaceutics Modeling Scientist Perspective, AAPSPharmSciTech, DOI: 10.1208/s12249-023-02521-y
- Bhattiprolu AK et al. Utility of Physiologically Based Biopharmaceutics Modeling (PBBM) in Regulatory Perspective: Application to Supersede f2, Enabling Biowaivers & Creation of Dissolution Safe Space. J Pharm Sci. 2022 Dec;111(12):3397-3410. doi: 10.1016/j.xphs.2022.09.003
- Jaiswal S et al. Development, validation and application of physiologically based biopharmaceutics model to justify the change in dissolution specifications for DRL ABC extended release tablets. Drug Dev Ind Pharm. 2021 May;47(5):778-789. doi: 10.1080/03639045.2021.1934870
- Yuvaneshwari K et al. Applications of PBPK/PBBM modeling in generic product development: An industry perspective. Journal of Drug Delivery Science and Technology. Volume 69, March 2022, 103152
- Kollipara S et al. In vitro and In silico biopharmaceutic regulatory guidelines for generic bioequivalence for oral products: Comparison among various regulatory agencies. Biopharmaceutics & Drug Disposition. Doi: 10.1002/bdd.2292
- Heimbach Tet al. Establishing the Bioequivalence Safe Space for Immediate-Release Oral Dosage Forms using Physiologically Based Biopharmaceutics Modeling (PBBM): Case Studies. J Pharm Sci. 2021;110(12): 3896-3906. https://doi.org/10.1016/j.xphs.2021.09.017
- Sivacharan Kollipara, Rajkumar Boddu, Tausif Ahmed, Siddharth Chachad. Simplified Model-Dependent and Model-Independent Approaches for Dissolution Profile Comparison for Oral Products: Regulatory Perspective for Generic Product Development, AAPS PharmSciTech. 2022 Jan 13;23(1):53. doi: 10.1208/s12249-021-02203-7
- Aishwarya R et al. A Novel Approach to Justify Dissolution Differences in an Extended Release Drug Product using Physiologically Based Biopharmaceutics Modeling and Simulation. J Pharm Sci. 2022;111(6):1820-1832. https://doi.org/10.1016/j.xphs.2022.02.007

References

- Karnati et al. Modelling Based Approaches to Support Generic Drug Regulatory Submissions-Practical Considerations and Case Studies. AAPS J. 2023. https://doi.org/10.1208/s12248-023-00831-4
- Boddu et al. Power of integrating PBPK with PBBM (PBPK-BM): a single model predicting food effect, gender impact, drug-drug interactions and bioequivalence in fasting & fed conditions. Xenobiotica. 2023. https://doi.org/10.1080/00498254.2023.2238048
- Ahmed et al. Biopharmaceutics Risk Assessment—Connecting Critical Bioavailability Attributes with In Vitro, In Vivo Properties and Physiologically Based Biopharmaceutics Modeling to Enable Generic Regulatory Submissions. AAPS J. 2023, https://doi.org/10.1208/s12248-023-00837-y

Thank You