

Specific Populations: Pediatrics, Pregnancy, Renal and Hepatic Impairment

Mario Sampson, PharmD

Clinical Pharmacology Reviewer Office of Clinical Pharmacology, Division 4 Office of Translational Sciences Center for Drug Evaluation & Research

Disclaimer

 The views expressed in this presentation are those of the speaker and do not reflect the official policy of the FDA. No official endorsement by the FDA is intended nor should be inferred.

Objectives

- Awareness of physiological changes associated with specific populations and implications for drug dosing
- Be able to describe types of studies commonly done to determine dosing recommendations for specific populations

Overview

- Investigational drugs are typically studied in a fairly homogeneous population of healthy adults to evaluate pharmacokinetics, tolerability, food effect, etc
- Efficacy and safety studies in the disease population are less homogeneous but may still exclude a significant share of the population
 - Pediatrics, pregnant women, elderly, etc
- It may not be feasible to conduct efficacy and safety studies within each specific population. Efficacy and safety are first established in the general population.
- Dosing requirements are often determined for subgroups by comparing pharmacokinetics (PK) within the subgroup to PK within the general population

Overview

Specific populations that will be discussed

- Pediatrics
- Pregnancy
- Lactation
- Renal Impairment
- Hepatic Impairment
- Geriatrics

Specific populations that will not be discussed

- Sex
- Race
- Obesity
- Genetics

Pediatrics

• Developmental physiological changes during infancy and childhood have implications for drug dosing

Physiologic Factors	Difference Compared to Adults	PK Implications	Example Drug	Physiologic Factors	Difference Compared to Adults	PK Implications	Example Drug
Oral absorption				Distribution			
Gastric pH	Ŷ	↓ Bioavailability (weak acids)	Phenytoin, phenobarbital, ganciclovir			↑ Volume of distribution (hydrophilic drugs)	Gentamicin, linezolid, phenobarbital, propofol
		↑ Bioavailability (weak bases)	Penicillin G, ampicillin, nafcillin	Body water : fat ratio	↑	↓ Volume of d	Discourse la secondaria
Gastric emptying time	Ŷ	Delayed absorption	Phenobarbital, digoxin and sulfonamides			istribution (lipophilic drugs)	Diazepam, lorazepam
Intestinal CYP3A4	\downarrow	↑ Bioavailability	Midazolam	Protein binding	\downarrow	↑ Free fraction of drugs	Sulfonamides
Intestinal GST	1	↓ Bioavailability	Busulfan	Hepatic metabolism		1	
Intestinal drug transporters	\downarrow	↓ Bioavailability	Gabapentin	Phase I enzyme activity	\downarrow	↓ Hepatic clearance	Theophylline, caffeine, midazolam
Percutaneous absorption				Phase II UGT enzyme activity	\downarrow	↓ Hepatic clearance	Morphine
Hydration of epidermis	ſ	↑ Bioavailability	Steroids	Renal excretion			
Intramuscular absorption				Glomerular filtration rate	\downarrow	↓ Renal clearance	Aminoglycosides
Skeletal muscle blood flow	Variable	Unknown	n.a.	Renal tubular absorption and secretion	\downarrow	↓ Renal clearance	Digoxin

 \uparrow , changes increased in values; \downarrow , changes decreased in values; GST, glutathione S-transferase; n.a., not available; PK, pharmacokinetic;

UGT, UDP glucuronosyltransferase.

www.fda.gov

Pediatrics

- Pediatric participants can be included in clinical pharmacology studies if there is "no more than minimal risk" or a "minor increase over minimal risk"
- Patient population is enrolled (no healthy volunteer pediatric studies)
- Where disease course and drug response can be assumed to be similar in adults and the pediatric population, a PK and safety study may suffice for pediatric approval
- The purpose of the pediatric PK study is to identify the dose that results in similar exposures (Cmax, AUC, etc) as observed in adults in order to extrapolate efficacy from adults to pediatrics

Pediatrics – example study

- Extrapolation of adult efficacy was used for adolescent approval of atazanavir (ATV) in combination with cobicistat (COBI) and darunavir (DRV) in combination with COBI for treatment of HIV
- Approved adult dosages were administered to adolescents with HIV
- Exposure differences in adolescents vs adults were observed (↑ATV, ↓DRV, comparable for COBI), but were deemed not clinically significant

Parameter Geometric Mean (CV%)	Cobi	cistat	Atazanavir	Darunavir
Treatment Administered	TYBOST + Atazanavir	TYBOST + Darunavir	TYBOST + Atazanavir	TYBOST + Darunavir
Pediatric Subjects ^a	N=12	N=7	N=12	N=7
AUC _{tau} (mcg·hr/mL)	12.11 (44.7)	8.33 (34.9)	49.48 (49.1)	77.22 (29.5)
C _{max} (mcg/mL)	1.28 (31.7)	1.10 (20.0)	4.32 (49.9)	7.32 (21.7)
C _{tau} (mcg/mL)	0.09 (156.2)	0.02 (123.9) ^b	0.91 (96.4)	0.68 (91.6)
Adults ^{c,d}	N=30°	N=21 ^d	N=30°	N=21 ^d
AUC _{tau} (mcg·hr/mL)	9.65 (41.8)	7.69 (43.9)	39.96 (52.1)	90.56 (45.3)
C _{max} (mcg/mL)	1.28 (35.6)	1.04 (35.3)	3.54 (45.8)	8.34 (33.3)
C _{tau} (mcg/mL)	0.04 (112.7)	0.02 (135.1) ^e	0.58 (84.7)	1.00 (108.0)

Source: Tybost® labeling

FDA

Pregnancy

• Physiological changes during pregnancy in general peak during the second trimester and have implications for drug dosing

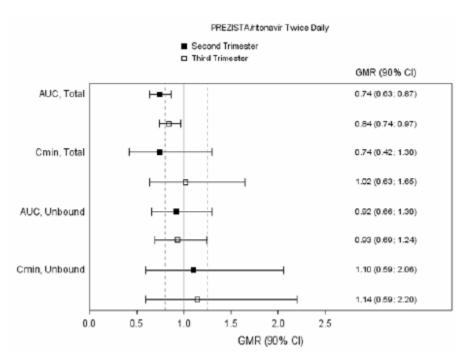
System (reference)	Parameter	Non-pregnant	Pregnant
Cardiovascular ^{64,71,72}	Cardiac output [L/min]	4.0	6.0
	Heart rate [beats per min]	70	90
	Stroke volume [mL]	65	85
	Plasma volume [L]	2.6	3.5
Respiratory73,74	Total lung capacity [mL]	4225	4080
	Residual volume [mL]	965	770
	Tidal volume [mL]	485	680
Liver ⁷⁵	Portal vein blood flow [L/min]	1.25	1.92
	Hepatic artery blood flow [L/min]	0.57	1.06 ^a
Renal ⁷⁶	Glomerular filtration rate [mL/min]	97	144
	Serum creatinine [mg/dL]	0.7	0.5

Enzyme (references)	Pregnancy-induced change	Potential substrates in obstetrics
CYP3A4 ^{19,20,77,78}	Increased	Glyburide, nifedipine, and indinavir
CYP2D6 ^{77,79}	Increased	Metoprolol, dextromethorphan, paroxetine, duloxetine, fluoxetine, and citalopram
CYP2C9 ^{18,80}	Increased	Glyburide, NSAIDs, phenytoin, and fluoxetine
CYP2C19 ^{18,80}	Decreased	Glyburide, citalopram, diazepam, omeprazole, pantoprazole, and propranolol
CYP1A2 ^{17,23,77,81}	Decreased	Theophylline, clozapine, olanzapine, ondansetron, and cyclobenzaprine
UGT1A4 ⁸²⁻⁸⁴	Increased	Lamotrigine
UGT1A1/9 ²⁵	Increased	Acetaminophen
NAT2 ^{17,24,85}	Decreased	Caffeine

Increased enzyme activity = faster metabolism = higher dose needed

^aNot statistically significant.

Feghali et al, Semin Perinatol, 2015 9


Pregnancy

- Pregnant women can be included in PK studies if prior animal and human studies demonstrate minimal risk to the fetus
- Patient population is enrolled (no healthy volunteer studies)
- To determine the need for dose adjustment during pregnancy, the recommended study design is to compare drug pharmacokinetics (PK) during pregnancy compared to baseline.
 - Baseline is typically postpartum
 - For highly protein bound drugs it is recommended to measure unbound drug concentrations

Pregnancy – example study

- The PK of darunavir (DRV) in combination with ritonavir (RTV) was evaluated in pregnant women with HIV
- The approved dose for non-pregnant adults was administered during pregnancy and postpartum. Total and unbound DRV was measured.
- Based on the observation of similar unbound exposure during pregnancy vs postpartum, DRV twice daily with RTV is approved for use during pregnancy

Source: Prezista® labeling. GMR = geometric mean ratio; CI = confidence interval

Lactation

- Women take an average of four medications during lactation
- Decisions regarding drug therapy and continuation of breastfeeding during therapy are often made in the absence of data
- Clinical lactation studies are recommended where the drug is expected or known to be used by women of reproductive age or lactating women

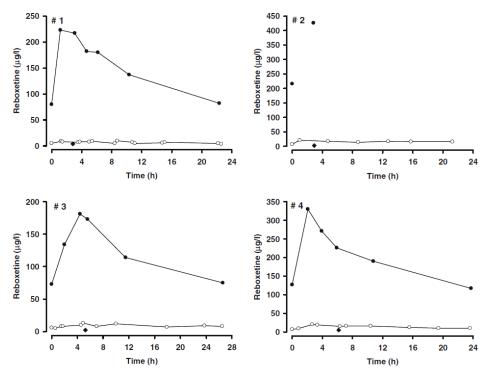
Wang et al, 2017, CPT

Clinical Lactation Studies: Considerations for Study Design https://www.fda.gov/media/124749/download

Lactation

- The Pregnancy and Lactation Labeling (Drugs) Final Rule, effective 2015, requires a summary of known data regarding the following (or a statement that the information is unknown):
 - Presence of a drug and/or its active metabolite(s) in human milk
 - The effects of a drug and/or its active metabolite(s) on the breastfed child
 - The effects of a drug and/or its active metabolite(s) on milk production

Lactation – recommended study design


- FDA recommends a milk-only study in lactating women. If clinically relevant drug concentrations are found in breast milk, further studies may be needed.
- Goals of the milk-only study are to quantify the amount of a drug transferred into breast milk and evaluate effect of a drug on milk production
- Generally, it is recommended to collect the entire milk volume from both breasts over 24 hours at steady state

Lactation – recommended study design

- Daily infant dosage from breastfeeding should be reported using either of the following methods:
 - Drug concentration in milk X milk volume consumed per day
 - Maternal milk-to-plasma concentration ratio X average maternal plasma concentration
 X daily infant milk intake volume
- Relative infant dose (infant dosage/maternal dosage) should be reported. Or if the drug is approved for infants, estimated daily infant dosage from breastfeeding should be compared to the approved dose.

Lactation – example study

Study enrolled four breastfeeding women treated with reboxetine (antidepressant not approved in the US) for postnatal depression

FDA

Fig. 1 Milk (0) and plasma (•) concentration-time profiles over a dose interval at steady-state following the morning reboxetine dose (time zero) in patients 1, 2, 3, and 4. The concentration of reboxetine patient 2 is shown as the LOD for the sample (4 ug/l)

in the breastfed infant's plasma is also shown relative to the mother's reboxetine dose (\bullet) . Note that the value for the infant of

www.fda.gov

Lactation – example study

Patient	Milk			Plasma			M/P _{AUC}
	C _{max} (µg/l)	$t_{max}(h)$	C_{av} (µg/l)	C _{max} (µg/l)	t _{max} (h)	C_{av} (µg/l)	
1	10	8.8	6.7	223	1.2	142	0.05
2	21	1.0	16.3	_b	_b	321°	0.05
3	12.5	5.8	8.9	181	4.2	115	0.08
4	20	2.7	13.5	330	2.1	191	0.07
Mean	16	4.3	11.3	245	2.1	192	0.06
95% CI)	(7, 25)	$(1.9, 7.3)^{a}$	(4.4, 18.2)	(54, 436)	$(1.4, 3.7)^{a}$	(37, 337)	(0.03, 0.09)

Table 2 Reboxetine C_{max} , t_{max} and C_{av} for milk and plasma, and M/P_{AUC} estimates

^aMedian (25th and 75th percentiles); ^b insufficient data to estimate values; ^c mean of 2 observations

Patient	Maternal dose (µg/kg/day)	Absolute infant dose ($\mu g/kg/day$)	Relative infant dose $(\%)^a$	Infant plasma concentration ($\mu g/l$)
1	44	1.0	2.3	<4.0
2	172	2.4	1.4	2.6
3	54	1.3	2.5	2.3
4	104	2.0	2.0	5.0
Mean	79	1.7	2.0	
(95%CI)	(49, 138) ^b	(0.7, 2.7)	(1.3, 2.7)	

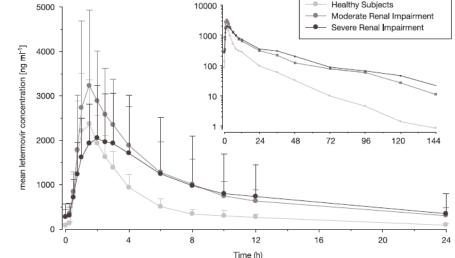
Table 3 Maternal dose of reboxetine, absolute and relative infant doses, and infant plasma concentrations of reboxetine

^aCalculated from the primary data, ^b median (25th and 75th percentiles)

www.fda.gov

FDA

Renal Impairment



- In adults, renal function decreases with age
- For drugs eliminated renally, to avoid adverse events dose adjustments may be needed for patients with renal impairment. However, regardless of how the drug is eliminated, renal impairment can affect drug metabolism and transport.
- Because exposures of both renally and non-renally eliminated drugs can be impacted by renal impairment, renal impairment PK studies are recommended for most drugs intended for chronic use.
- Typically single dose studies. Enrollment of those with renal impairment (mild, moderate, and/or severe) and a group of controls with similar demographics (such as age and gender). Primary endpoint is PK.

Pharmacokinetics in Patients with Impaired Renal Function — Study Design, Data Analysis, and Impact on Dosing and Labeling https://www.fda.gov/media/78573/download 18

Renal Impairment – example study

- Dedicated PK study in the non-disease population: The PK of total and unbound letermovir was evaluated in subjects with moderate or severe renal impairment, in comparison to subjects with normal renal function. Despite <2% of the dose being excreted in urine (drug is primarily eliminated by metabolism), higher exposures were observed in subjects with renal impairment (see figure).
- Phase 3 study in the transplant population: No adverse . events were identified as being associated with drug exposure. Renal impairment (mild and moderate) was not associated with exposure changes in the phase 3 study.
- Despite ~2-fold higher exposures in renal impairment, no dose adjustment is recommended

Letermovir plasma concentration-time curves after the final dose on Day 8

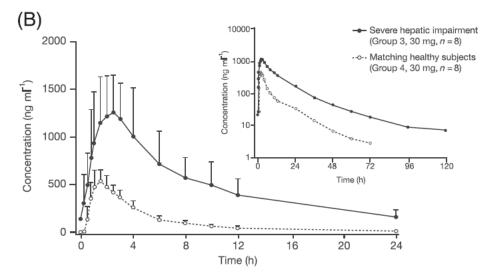
www.fda.gov

19

FDA

Hepatic Impairment

- Many drugs are primarily eliminated by metabolism. Liver disease can result in reduced metabolism and resulting increased drug exposures.
- A hepatic impairment PK study is recommended for drugs where hepatic metabolism and/or excretion accounts for >20% of total elimination
- Degree of liver function estimated according to Child-Pugh category
- Single dose study is acceptable if the drug has dose-proportional kinetics. Enrollment of those with hepatic impairment (mild, moderate and/or severe) and matched controls.


Pharmacokinetics in Patients with Impaired Hepatic Function: Study Design, Data Analysis, and Impact on Dosing and Labeling https://www.fda.gov/media/71311/download 20

www.fda.gov

Sources: Prevymis® labeling, NDA 209939 Clinical Pharmacology Review (<u>https://www.accessdata.fda.gov/scripts/cder/daf/</u>), Kropeit et al, Br J Clin Pharmacol, 2017

Hepatic Impairment – example study

- The PK of total and unbound letermovir was evaluated in subjects with moderate or severe hepatic impairment, in comparison to subjects with normal hepatic function
- ~60% higher mean total exposures in moderate hepatic impairment vs healthy subjects (not statistically significant, data not shown). No dose adjustment recommended.
- Mean 3.8-fold higher total exposure in severe hepatic impairment vs healthy subjects (see figure). Use in severe hepatic impairment not recommended.

21

Geriatrics

FDA

- Small molecule drugs are eliminated by renal and/or hepatic elimination
- Decreases in renal function and decreased function of certain drug metabolizing enzymes have been associated with aging

	Route of inactivation	Change
	Renal	
	Filtration	\downarrow
	Secretion	\downarrow
	Reabsorption	\downarrow
	Hepatic	
	Oxidation (CYP)	$\downarrow \leftrightarrow$
	CYP1	?↓
•	CYP2C, CYP2D, CYP2E	?↓
	СҮРЗА	\downarrow
	Conjugation	\leftrightarrow

Geriatrics

- Age-related changes in the central nervous system and autonomic responses have also been observed
- These changes may be responsible for the following in older patients:
 - Benzodiazepines: Sedation and cognition
 - Opiate agonists: CNS depression
 - Antihistamines and neuroleptics: Delirium and disorientation

Effector	Change
Central nervous system	
Dopaminergic D ₁ , D ₂	\checkmark
Serotonergic 5HT _{1A} , 5HT _{2A}	\downarrow
Muscarinic cholinergic M ₁	\downarrow
Acetylcholinesterase	\downarrow
β-Adrenergic	\checkmark
α-Adrenergic	\leftrightarrow
GABAergic	?
Enkephalin/endorphin	?
Autonomic nervous system	
β ₁ ,β ₂ -Adrenergic	\checkmark
α ₁ -Adrenergic	$\leftrightarrow \! \downarrow$
Dopaminergic	\downarrow
Parasympathetic responses	\downarrow
Baroreflex function	$\downarrow\downarrow$

FDA

24

Geriatrics – example study

- Zolpidem (sedative-hypnotic) labeling specifies lower doses for elderly or debilitated patients, females and patients with hepatic impairment
- Elderly patients "may be especially sensitive to the effects of zolpidem"
- In one study, higher exposures in the elderly were observed among females but not males

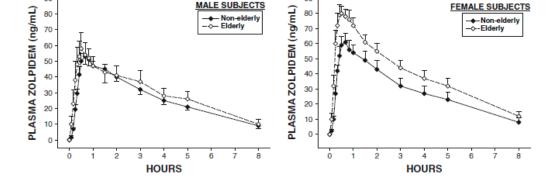


Fig. 1 Mean (\pm standard error) plasma zolpidem concentrations for the first 8 h after a 3.5 mg dose of zolpidem administered as sublingual zolpidem tablets (ZST) to healthy elderly and non-elderly male (*left*) and female (*right*) volunteers

Conclusions

- In comparison to past decades, increasing attention is paid to the need to include patients from all segments of society into clinical studies so that there are fewer gaps in drug labeling recommendations
- With the exception of geriatrics, FDA guidance documents are available to assist investigators in designing studies in the specific populations described in this talk

Challenge Question 1

 Name two assumptions that should be justified to extrapolate adult efficacy to the pediatric population

Challenge Question 2

 Total drug concentrations are typically measured in PK studies. What additional type of drug concentrations may also need to be measured in pregnancy or organ impairment PK studies?