FDA Public Workshop Evaluation of Immunosuppressive Effects of In Utero Exposure to Drugs and Biologic Products White Oaks Campus Silver Spring, Maryland

Nonclinical Evaluation of Placental Transfer and Immunotoxic Potential:

In Vivo Animal Assessments

John M. DeSesso, Ph.D.

Center for Health Sciences **Exponent**

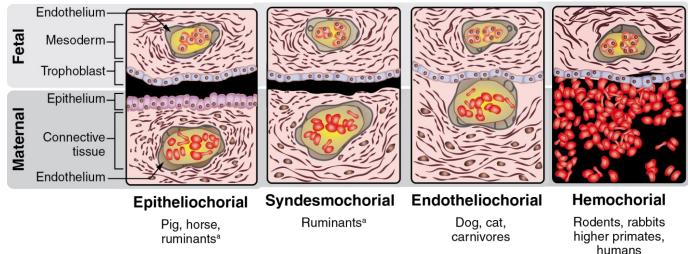
11 July 2024

- The author is employed by Exponent (a science, engineering and technology consulting firm)
- The author has no financial or other interests that pose a conflict of interest

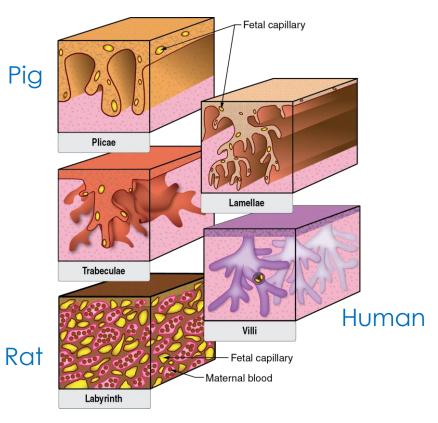
Outline of Presentation

- What is a placenta?
- Understanding the rodent inverted yolk sac placenta
- Placental transport of immunoglobulins in rodents and humans
- Can safety tests inform placental research?
- Is there a "best" placental model?

What is a placenta?

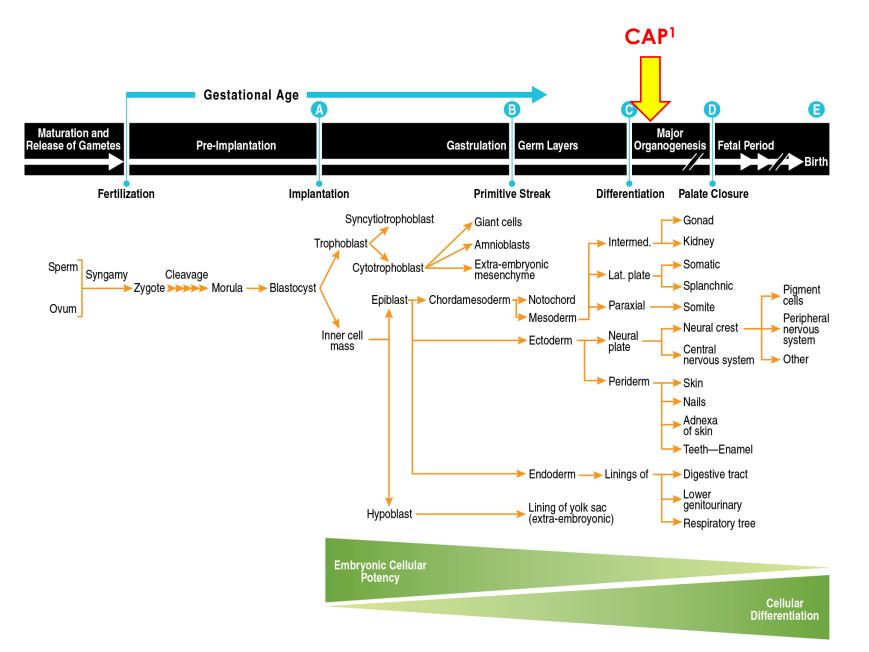

Any apposition of embryonal to parental tissues for the purpose of physiological exchange

A Unique Organ


- Composed of tissues from 2 different individuals
- Temporary but of critical importance
- Morphology and physiology evolve dramatically with age

Materno-fetal Transfer Is Major Function of Placentae

- Efficiency of transfer is affected by
 - Increase in circumference of placental base
 - Modifications of interface to increase surface area
 - Decrease in Layers and thickness of layers between maternal and fetal blood


Presence of receptors/carrier molecules

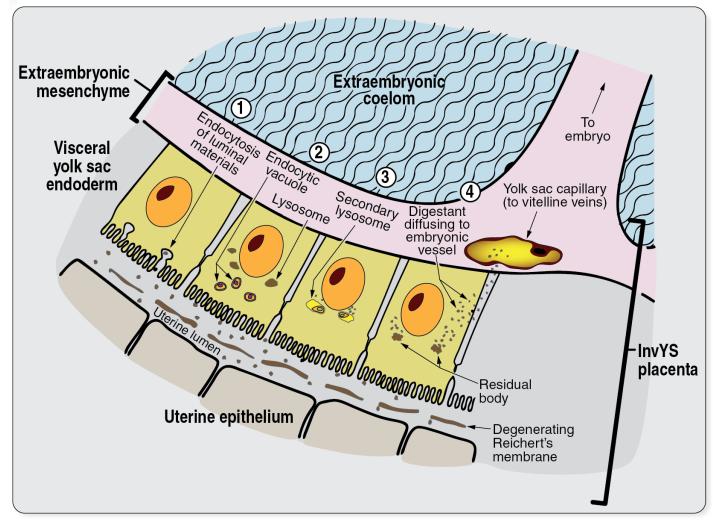
Regardless of morphological differences, the role of all placentae is materno-fetal exchange

However, these differences are important, and must be taken into consideration for appropriate extrapolation to humans

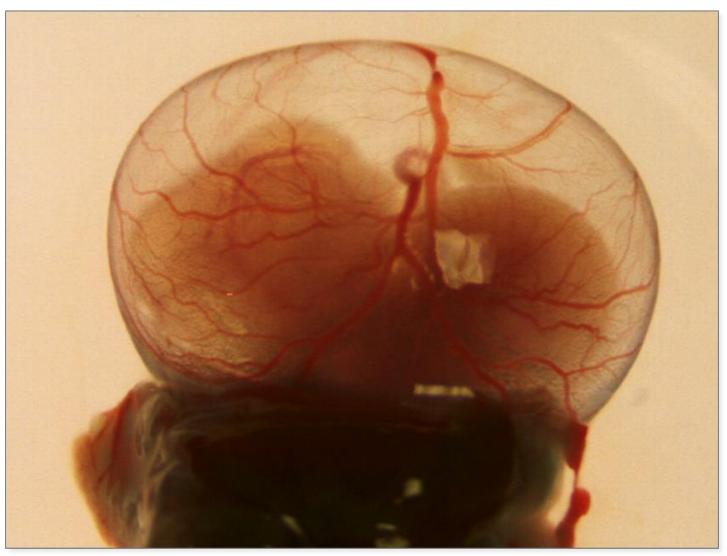
Conceptual Roadmap of Embryonic Development

Understanding the rodent inverted yolk sac placenta

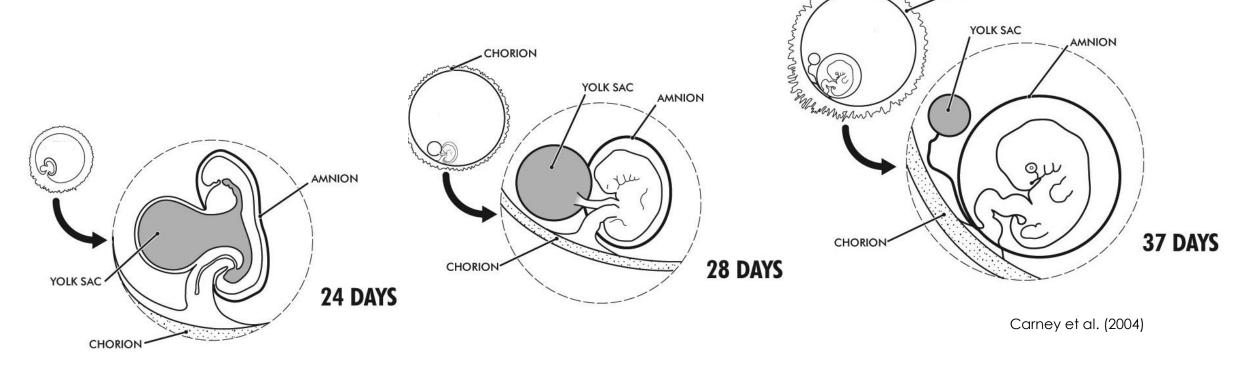
Chorioallantoic Placenta (CAP) Develops Late in Organogenesis of Rodents


	Gestational Milestone ¹ (in gestational days)									
Species	A ² Implantation	B Primitive Streak	C Early Differentiation	САР	D Organogenesis Ends	E Usual Parturition				
Hamster	4.5–5	7	8		13	16				
Mouse	5	6.5	9	9.2	15	19–20				
Rat	5–6	8.5	10	11.5	17	21–22				
Rabbit	7.5	7.25	9	12.5	19	30–32				
Guinea Pig	6	12	14.5		~29	67–68				
Monkey	9	17	21	~23	~44–45	166				
Human	6–7	13	21	28	~50–56	266				

DeSesso (2012) in Developmental and Reproductive Toxicology 3rd Ed, RD Hood Ed, Informa Press


Rodent Inverted Yolk Sac Placenta

Pinocytosis and Process of Histiotrophic Nutrition

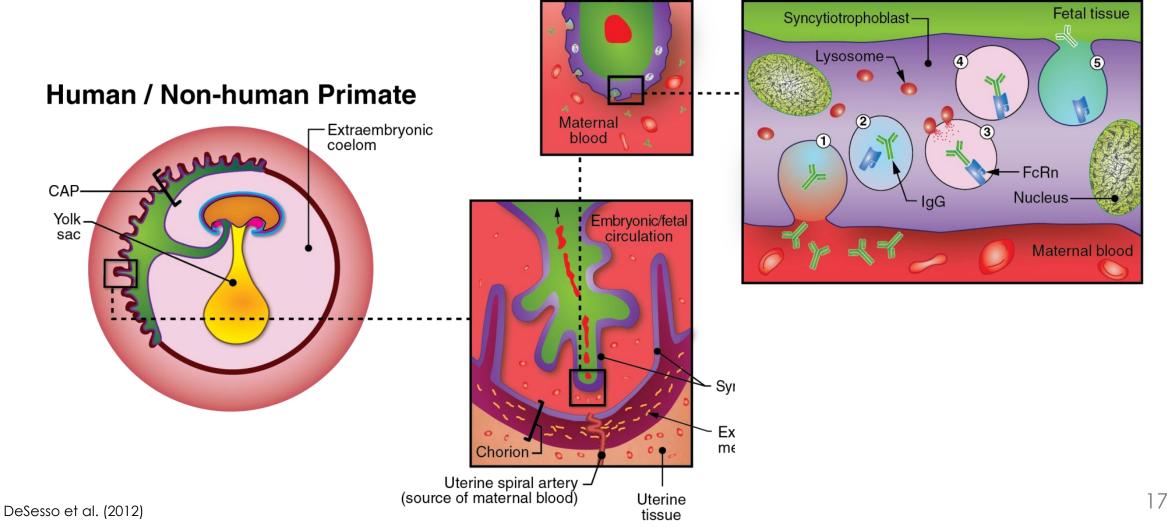

Day 13 Rat Conceptus

Courtesy of WIL Research

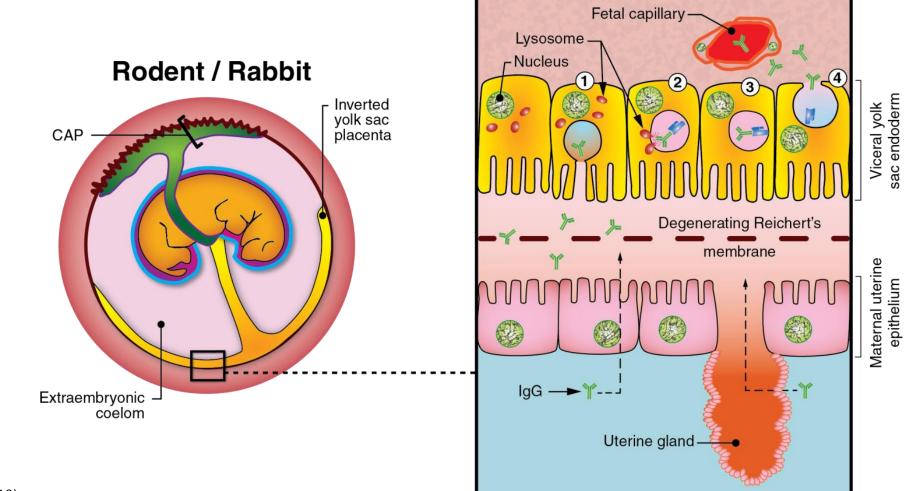
Human Yolk Sac Development

 Yolk sac never surrounds human embryo and does not invert

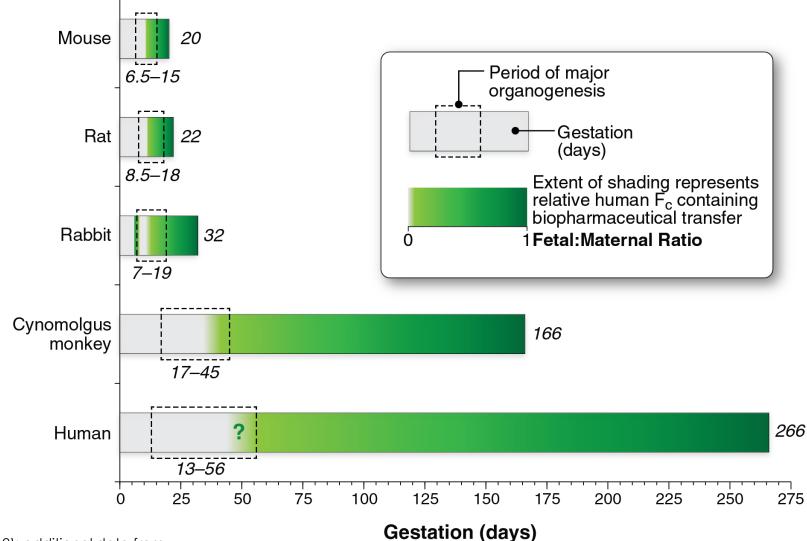
• Nevertheless, pinocytosis is an important mechanism


Placental transport of Immunoglobulins in rodents and humans

Immunoglobulin G Structure


Molecular Weight ~150,000 Daltons

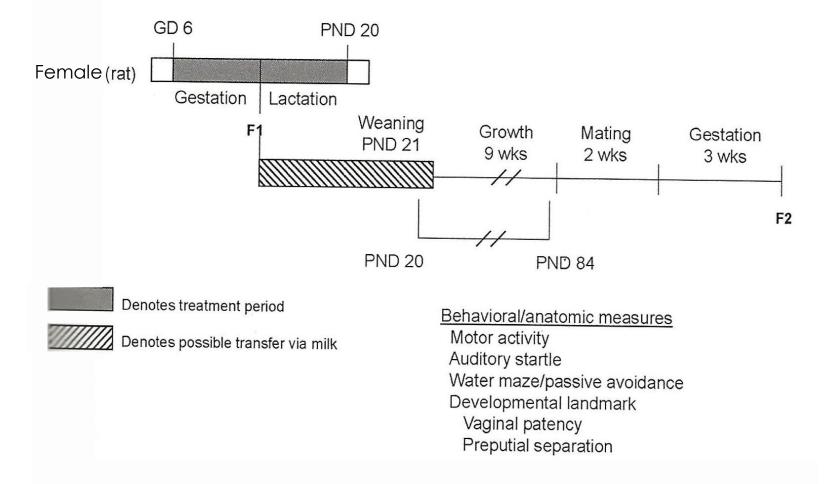
How Do Large Biomolecules (IgG) Get to Offspring?



But rodent syncytiotrophoblast cells do <u>not</u> have FcRn receptors

How Do Large Biomolecules (IgG) Get to Rodent Offspring?

Comparative Periods of Biopharmaceutical Transfer


Based on figure from DeSesso et al. (2012); additional data from Bowman et al. (2013); Moffat et al. (2014)

Can safety tests inform placental research?

Safety Tests that Involve Placental Transfer

- Embryo-Fetal Development Tests (EFD)
- (Multigeneration) Reproductive Toxicity Tests
- Pre- and Postnatal Development Test (PPND)

Pre- and Postnatal Development Study (PPND) with Behavioral/Anatomical Measures

Advantages of Pre- and Postnatal Development Study (PPND)

- Assesses functional consequences of mid to late gestational exposure
 - Relevant for risk assessment of monoclonal antibodies
 - Examination of pre-term fetuses not adequate to reveal possible <u>adverse effects</u> on functional development
 - Fetal exposure to maternal IgG increases as pregnancy progresses
 - •Useful for understanding real-life exposures that cause effects
 - Helpful for setting exposure levels that can be used in mechanistic models to avoid using super-pharmacological exposures

Is there a "best" placental model?

General comments

- In vivo models
 - Incorporate ADME and vascular alterations not yet possible in vitro
- Non-human primates
 - Among apes
 - Chimpanzee placenta is nearly identical to human
 - Ethically untenable
 - Among old world monkeys
 - Rhesus is best studied (but problematic)
 - Bi-discoid placenta
 - Superficial implantation
 - Poor invasive potential
 - Prone to abortion
 - Not a particularly good choice

Reproductive and Placental Characteristics of Six Mammals

Characteristic	Human	Mouse	Rat	Rabbit	Guinea Pig	Mini Pig
Female adult weight	60 kg	20 g	280 g	3.5 kg	800 g	50 kg
Gestation Length (days)	266	19-20	22	32	64	115
Litter size	1	6 - 8	10 -16	5 - 8	2 - 4	6 - 8
Neonatal weight	3.3 - 3.5 kg	1.2 g	7 g	30 - 35 g	100 g	740 g
Placental shape	Discoid	Discoid	Discoid	Discoid	Discoid	Diffuse
Placental invasiveness	Hemo <u>mono</u> chorial	Hemo <u>tri</u> chorial	Hemo <u>tri</u> chorial	Hemo <u>di</u> chorial	Hemo <u>mono</u> chorial	Epitheliochorial
Surface area modifications	Villi	Labyrinth	Labyrinth	Labyrinth	Labyrinth w/subplacental villi	Plicae
Fetal boundary layer in placenta	STB1	STB	STB	STB	STB	Cytotrophoblast
Site of FcRn	STB	Visceral endoderm of yolk sac	Visceral endoderm of yolk sac	Visceral endoderm of yolk sac	Visceral endoderm of yolk sac	Cytotrophoblast

¹ Synctiotrophoblast

Data from: Ramsey (1982); Aguilera et al (2022); DeSesso (2012); DeSesso et al (2012)

Summation

Conclusions

- Placentae have disparate anatomies, but common function
- The rodent inverted yolk sac placenta enables maternofetal exchange early in gestation
- Among safety tests, PPND provides best ability to investigate health effects of immunoglobulins
 - If TK is performed it can inform dose-setting for in vitro tests
- Placental research is best considered as a tapestry wherein diverse tests in various systems contribute to our understanding of this complex organ
- There is no single "best" model

Reference List

- Aguilera N, Salas-Perez F, Ortiz M, et al. (2022) Rodent models in placental research. Implications for fetal origins of adult disease. Anim Reprod 19(1) e20210134.
- Bowman CJ, Breslin WJ, Connor AV, et al. (2013) Placental transfer of Fccontaining biopharmaceuticals across species, an industry survey analysis, Birth Defects Res B Reprod Develop Toxicol 98: 459–485.
- Carlson BM (2009) Human Embryology and Developmental Biology, 4th Ed, Elsevier Mosby, Philadelphia.
- Carney EW, Scialli A, Watson RE, et al. (2005) Mechanisms regulating toxicant disposition to the embryo during early pregnancy: An interspecies comparison, Birth Defects Res C Embryo Today 72: 345–360.
- DeSesso JM, (2012) Comparative gestational milestones in vertebrate development, in Developmental and Reproductive Toxicology: A Practical Approach, 3rd Ed., R. D. Hood, Ed., Informa Press, New York, pp. 93–139.
- DeSesso, JM, Williams AL, Ahuja A, et al. (2012) The placenta, transfer of immunoglobulins, and safety assessment of biopharmaceuticals in pregnancy, Crit Rev Toxicol, 42: 185–210.
- DeSesso, JM. (2022) Comparative anatomy, pre- and postnatal changes during the development and maturation of the small intestine: Life-stage influences on exposure, Birth Defects Research, 114: 449-466.
- Enders AC (1965) A comparative study of the fine structure in several hemochorial placentas. Am J Anat 116: 29–67.
- Enders AC (1972) Mechanisms of implantation of the blastocyst. In: Biology of Reproduction: Basic and Clinical Studies, J.T. Velardo and B.A. Kasprow, eds., pp. 313–334.

- England MA (1996) Life Before Birth, 2nd Edition, Mosby-Wolfe, Baltimore.
- Kaufmann P, Burton G (1994). Anatomy and genesis of the placenta. In: The Physiology of Reproduction, Vol 1, 2nd ed., Knobil E and Neill JD, eds., Raven Press, Ltd., New York, pp. 44–484.
- Kim J, Mohanty S, Ganesan LP, et al. (2009) FcRn in the Yolk Sac Endoderm of Mouse Is Required for IgG Transport to Fetus. J Immunol 182: 2583–2589.
- Moffat GJ, Retter MW, Loomis et al. (2014) Placental transfer of a fully human IgG2 monoclonal antibody in the Cynomolgus monkey, rat, and rabbit: A comparative assessment from during organogenesis to late gestation. Birth Defects Res B Reprod Develop Toxicol 101: 178–188
- Ramsey EM (1982). The placenta: Human and animal. Praeger, New York.
- Red-Horse K, Zhou Y, Genbacev O, et al. (2004) Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest 114: 744–754
- Schneider H, Miller R K (2010) Receptor-mediated uptake and transport of macromolecules in the human placenta. Int J Dev Biol 54: 367-375.
- Schoenwolf GC, Bleyl SB, Brauer PR, and Francis-West PH (2021) Larsen's Human Embryology, 6th Edition, Elsevier, Philadelphia.
- Simister NE, and Story CM (1997). Human placental Fc receptors and the transmission of antibodies from mother to fetus. J Reprod Immunol 37: 1–23.