Method Suitability of Caco-2 Cell Models for Drug Permeability Classification

Donna A. Volpe, Ph.D.
Center for Drug Evaluation and Research
Food and Drug Administration
December 6, 2021
DISCLAIMER

The ideas, findings, and conclusions in this presentation have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any agency determination or policy.
Outline

• Method Suitability
• Model Drugs
• Reference Standards
• Acceptance Criteria
• Use of Permeability Assay
Method Suitability

- Generalized approach to standardize and validate a drug permeability model
- Establishes a correlation between experimental permeability values and human intestinal absorption (f_a)
- Allows for the use of different permeability assays within a laboratory whether they involve human studies, intact animals, intestinal tissue, or epithelial cells
- Accounts for intralaboratory variability
- Relies on assay standardization and validation, reference standards, and acceptance criteria to improve the consistency of experimental data to predict a drug’s intestinal permeability

Volpe AAPS J. 2010; 12:670-678
Method Suitability Components

Method Development
• Establish assay protocol
• Optimize and standardize assay parameters
• Set acceptance criteria

Assay Suitability
• Rank order relationship for model drugs between experimental permeability values and human intestinal absorption
• Define the high-permeability internal standard (HP-IS)

Permeability Classification
• Reference standard to demonstrate assay reproducibility
• Molecular markers for cell monolayer integrity
• Utilize HP-IS to classify new compound

Volpe AAPS J. 2010; 12:670-678
Model Drugs

• For *in vitro* cell culture methods, at least 5 model drugs per group are recommended to establish method suitability
• Model drugs have known intestinal absorption in humans and are passively absorbed
• Model drugs should represent a range of *in vivo* human intestinal absorption:
 - “Low” permeability ($f_a < 50\%$)
 - “Moderate” permeability ($f_a = 50\text{-}84\%$)
 - “High” permeability ($f_a \geq 85\%$)

M9 BCS Guidance, 2021. [https://www.fda.gov/media/148472/download]
Reference Standards

• Use of reference standards in permeability experiments:
 – High (HP) and low (LP) permeability standards to monitor experimental variations
 – Zero-permeability standard to monitor cell monolayer integrity (e.g., FITC-dextran, PEG-4000, Lucifer yellow, inulin)
 – HP internal standard (HP-IS) to classify drugs

• Permeability values of the standards should not differ significantly between different experiments, including those conducted to demonstrate method suitability

• Experimental options:
 – measure test drug together with reference standards
 – evaluate standards in the same monolayers after experiment with the test drug
 – use additional cell monolayers for standards
Acceptance Criteria

- Acceptance criteria are defined for selected reference standards and measurements for the permeability assays:
 - Measure of monolayer integrity
 - Apparent permeability (P_{app}) of zero, HP ($f_a \geq 85\%$) and LP ($f_a < 85\%$) permeability standards
 - Efflux of probe substrate compound
- Demonstrate functionality of assay
- Reference standards ensure reproducibility
Efflux

• Functional expression of efflux mechanism demonstrated in bidirectional experiments with a probe transporter substrate
• Efflux revealed by higher rate of substrate’s permeability in BL-to-AP (secretion) direction as compared to AP-to-BL (absorption) direction
• A drug with an efflux ratio (ER) ≥ 2 is considered as an efflux transporter substrate
 \[
 \text{ER} = \frac{P_{\text{app,BL-AP}}}{P_{\text{app,AP-BL}}}
 \]
• Rhodamine 123, digoxin, vinblastine, paclitaxel or quinidine can be used as probe substrates for demonstrating presence of P-gp transporter

Volpe. AAPS PharmSci. 6 (2):1-6, 2004
Use of Permeability Method

• Maintain same protocol from method suitability experiments to classify drug substance permeability
• Reference standards for classification and reproducibility
• Demonstrate passive transport of test drug:
 – Evaluate test drug at several concentrations (*e.g.*, 0.01×, 0.1× and 1× the highest strength in 250 mL), and
 – Measure bidirectional permeability of test drug (*i.e.*, AP-to-BL vs. BL-to-AP)
• Classify a test drug as highly permeable when its P_{app} is equal to or greater than that of the HP-IS

M9 BCS Guidance, 2021. [www.fda.gov/media/148472/download]
Example

- Caco-2 cells in 12-well plate format
- 18- to 22-day monolayer age
- HBSS pH 6.8 in AP chamber and pH 7.4 in BL chamber
- Initial drug concentration based on highest dose strength in 250 mL
- LP/HP boundary drug = Labetalol

Example

- Caco-2 cells in a 24-well plate format
- 21-day monolayer age
- HBSS pH 7.4 in AP and BL chambers
- Initial drug concentration based on maximal clinical dose in 250 mL
- LP/HP boundary drug = Metoprolol

Example

- Caco-2 cells in 12-well plate format
- 22- to 24-day monolayer age
- HBSS pH 6.8 in AP chamber and pH 7.4 in BL chamber
- Initial drug concentration = 10 μM
- LP/HP boundary drug = Minoxidil

Permeability Classification

Volpe DA. AAPS PharmSci. 6 (2):1-6, 2004
Summary

• Method suitability for intestinal permeability assays is comprised of three phases (method development, assay suitability, permeability classification)

• Each laboratory should set its own acceptance criteria for cell measurements and reference standards used in the initial experiments with the model drugs and those to classify drug permeability

• Method suitability, with its reliance on assay standardization and validation, reference standards, and acceptance criteria, enhances the consistency of experimental data to predict a drug’s intestinal permeability