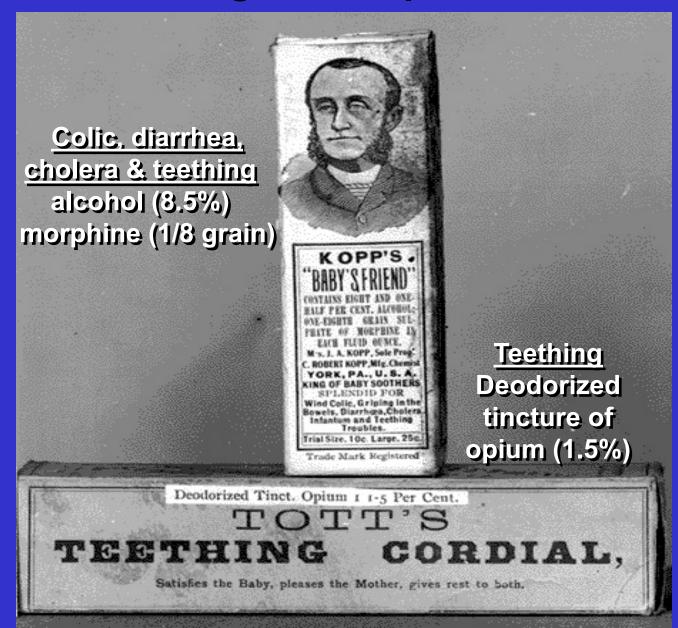
Extrapolation of Adult Efficacy Data to Pediatric Patients

John N. van den Anker, MD, PhD

Evan and Cindy Jones Endowed Professor in Pediatric Clinical Pharmacology


Division Chief of Clinical Pharmacology & Vice Chair of Pediatrics for Experimental Therapeutics

Children's National Hospital, Washington, DC

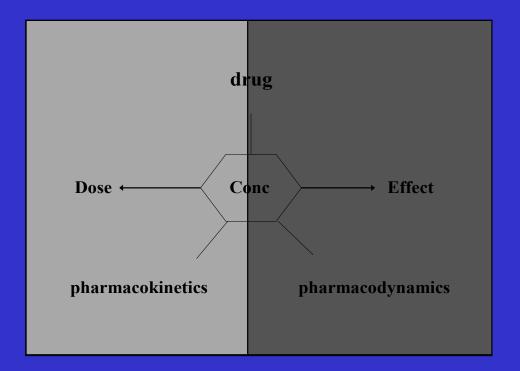
Disclosure(s)

- No conflicts to disclose
- Off label drug use in neonates, treated in NICUs, is the current standard and therefore will be presented

Historical Drug "Development" in Children

Medication Use in NICUs – Pediatrix, Inc. Data for 2007: 72,647 Patients - Rate/1000 Discharges

Drug	Rank	Use
Gentamicin	1	822
Ampicillin	2	726
Surfactants	3	234
Caffeine	4	224
Furosemide	5	199
Vancomycin	6	177
Metoclopramide	7	82
<u>Fentanyl</u>	8	95
Dopamine	9	89
Midazolam	10	80
<u>Morphine</u>	11	71
Ranitidine	12	70
Cefotaxime	13	62
Phenobarbital	14	59
Indomethacin	15	54


Medication Use in NICUs, 2014

Drug	Rank	
Ampicillin	1	
Gentamicin	2	
Caffeine	3	
Vancomycin	4	
Beractant	5	
Furosemide	6	
<u>Fentanyl</u>	7	
Dopamine	8	
Midazolam	9	
Calfactant	10	
Metoclopramide	11	
Ranitidine	12	
Poractant alpha	13	
<u>Morphine</u>	14	
Cefotaxime	15	

Neonatal Clinical Pharmacology

Role of Clinical Pharmacology

PK : what the body does to the drug: conc/time PD: what the drug does to the body : conc/effect

Extrapolation of Adult Efficacy Data to Pediatric Patients

Given the available data, is there a biological reason to believe that drugs with a well-established MOA (opioids, NSAIDs, acetaminophen, and local anesthetics) would be less effective (at similar concentrations) in pediatric patients less than 2 years of age compared to older children? If so, in which age group and what are the uncertainties? Assessment of PK and safety would be required in all age groups.

When Compared to Adults, Is Disease Progression and Response to Intervention Similar in Pediatrics?

Answer: No

NO EXTRAPOLATION

CONDUCT

1) Adequate dose-ranging studies in children to establish dosing

2) Safety and efficacy trials at identified dose(s)

Similar Exposure-Response in Pediatrics and Adults?

Answer: Yes

Is the Drug (or active metabolite) Concentration Measurable and Predictive of Clinical Response?

Answer: Yes

FULL EXTRAPOLATION

CONDUCT

 Adequate PK study to select dose(s) to achieve similar exposure in adults
Safety trials at identified dose(s)

Similar Exposure-Response in Pediatrics and Adults?

Is the Drug (or active metabolite) Concentration Measurable and Predictive of Clinical Response?

Answers : No

Is There a PD Measurement That Can be Used to Predict Efficacy in Children?

Answer: Yes or No

PARTIAL EXTRAPOLATION

CONDUCT

 Adequate dose-ranging studies in children to establish dosing
Safety and efficacy/PD trials at

identified dose(s)

Extrapolation of Adult Efficacy Data to Pediatric Patients

Given the available data, is there a biological reason to believe that drugs with a well-established MOA (opioids, NSAIDs, acetaminophen, and local anesthetics) would be less effective (at similar concentrations) in pediatric patients less than 2 years of age compared to older children? If so, in which age group and what are the uncertainties? Assessment of PK and safety would be required in all age groups.

