The University

What it will take to cross the of Vermont

LARNER COLLEGE OF MEDICINE
Valley of Death:

Dealing with Biological

Heterogeneity and Epistemic

Uncertainty with Agent-based

Modeling using an adaptation of

the Principle of Maximal

Entropy/lgnorance Gary An, MD, FACS

Department of Surgery

University of Vermont

U.S. Food and Drug Administration
FDA-MCERSI Workshop on QSP

May 11, 2023




Translational Systems Biology

Name Motivated by the Zerhouni-Era NIH "Roadmap” 2003-5 =>
“Translational” Emphasis
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PLOS 2008

Translational Systems Biology of Inflammation

Yoram Vodovotz [E], Marie Csete, John Bartels, Steven Chang, Gary An

Published: April 25, 2008 « https://doi.org/10.1371/journal.pcbi.1000014

Review > JBurn Care Res. Mar-Apr 2008;29(2):277-85.
doi: 10.1097/BCR.0b013e31816677c8.

TRANSLATIONAL
SYSTEMS BIOLOGY

Translational systems biology: introduction of an

engineering approach to the pathophysiology of the
burn patient

Yoram Vodovotz & Gary An

Gary An 1, James Faeder, Yoram Vodovotz

Primary Features:
= Dynamic Computational Modeling to Accelerate Hypothesis Testing
=  Simulate Clinical Contexts => In Silico Clinical Trials

= Use abstraction to identify conserved functions across biology (species,
Individuals, etc...)




Axioms of “True” Precision Medicine

Axiom 1: Patient A is not the same as Patient B (Personalization)

Axiom 2: Patient A at Time X is not the same as Patient Aat Time Y
(Precision)

Axiom 3: The goal of medicine is to treat, prognosis IS not enough
(Treatment).

Axiom 4: Precision medicine should find effective therapies for
every patient and not only to identify groups of patients that
respond to medicine (Inclusiveness)

An and Day, “Precision Systems Medicine: A Control Discovery Problem”
Systems Medicine: Integrative, Qualitative and Computational Approaches, in press




Rare Diseases and Personalized/Precision
Medicine

= Curse of Dimensionality:

= # potential features g # points of interventions %S #
patients with disease } their variance in manifestation
perpetual sparsity of data

= |s addressing “rare disease” same challenge as
achieving personalized medicine?

= In terms of the degree of biological heterogeneity,
everything is a "rare” disease...




The Valley of Death
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Reasons for the Valley of Death

= No “biological” natural laws/First Principles

= Biological heterogeneity => “Denominator Problem” of
Perpetual Data Sparseness

= Epistemic Uncertainty:
= Impossible to know everything

= How to use partial information?




What other Sciences do = Engineering

= Engineerings:

= Formal Process for identifying solutions given a set of system
constraints

= Uses Math/Formal Representations

= Hard for what makes biology biology (i.e. behavior of cells)
= No first principles/natural laws
= Lack of “trustworthy” formal representations

= Reverse engineering difficult due to non-path unigueness and
Intrinsic heterogeneity (epistemic limits of current methods)




What other Sciences do = Engineering

= Engineerings:

= Formal Process for identifying solutions given a set of system
constraints

= Uses Math/Formal Representations

= Hard for what makes biology biology (i.e. behavior of cells)
= No first principles/natural laws
= Lack of “trustworthy” formal representations

= Reverse engineering difficult due to non-path unigueness and
Intrinsic heterogeneity (epistemic limits of current methods)

= How to use mathematical/computational/theoretical
methods to overcome?




Medical Digital Twins and In Silico Trials: How to
reconcile epistemic uncertainty and biological

heterogeneity?

= In Silico trials should overcome barriers in Valley of
Death. But...

= How to encompass human heterogeneity in a clinical
population with incomplete knowledge (“good
enough”)?

= How to capture what is similar but able to generate
heterogeneity?

= How to deal with perpetual epistemic incompleteness?




Dealing with Epistemic Uncertainty:
Maximal Entropy Principle (MEP)

Basis from Information Theory/Statistical Physics
Find least biased statistical model that reproduces a specific data set
Infers unknown causal interactions
Bio applications: gene/protein interactions, neural signal processing, ecosystem

dynamics

If you don’t know the answer, it's better to have lots of possible
answers than to be wrong*

We extend MEP to the parameterization of mechanism-based
models => Embraces Heterogeneity

Goal of discovering robust control => guiding principle




Context: Control Discovery

Rational approach => requires a hypothesis of how the
system works (mechanisms)

Use minimal model “necessary” to establish control
over desired features of the system

Robust enough across biological/clinical heterogeneity
and epistemic uncertainty

Iterative refinement of underlying mechanistic model =>
more and “different” data




MEP applied to "Parameter” Landscape => Model
Rule Matrix (MRM)

Schematic of Cellular Function
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Form of Cellular Rule: aMediatorl + bMediator2 = Mediator3

Thus: a and b are rule parameters that represent “hidden” factors/controls/genes
that affect the contribution of Mediatorl and Mediator2 to the production of Mediator3




MEP applied to "Parameter” Landscape => Model
Rule Matrix (MRM)

Schematic of Cellular Function

“Gene”

Mediatorl Signal Protein
. Modification
Transduction

Mediator3

Receptor Transcription Factors Protein Synthesis Secretion

\

Mediator2

\/
All these are control functions
governed hv “nther” senes

‘ ORIGINAL RESEARCH article
Front. Physiol., 19 May 2021 | https://doi.org/10.3389/fphys 2021.662845
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into a representation of cell

Utilizing the Heterogeneity of Clinical Data for Model
Refinement and Rule Discovery Through the

Form of Cellular Rule: ;Mec Application of Genetic Algorithms to Calibrate a High-
Dimensional Agent-Based Model of Systemic
Inflammation
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Departmen of Surgery, Larner College of Medicine, The University of Vermont, Burlington, VT, United States




Example: Synthetic Multiplexed Molecular Time Series

Neutrophil
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= Simulation Model => Innate Immune &=

Response ABM (CCM 2004)
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= Data Source: USU/WRNMMC via

SC2i TDAP protocol = — e o | e
= 199 trauma patients: 92 developed ez
ARDS; 107 controls wo ARDS
= Data:

= Collected at t=0,1,3,7,14 days post-injury

= Blood-serum cytokine profiles time series: IL-1b, IL-1ra, IL-6, IL-
4, 1L-8, IL-10, G-CSF, IFNg, and TNFa

= Organ Failure Scores
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Results: Sample MRMs

Base IIRABM MRM Calibrated IIRABM MRM



Results: Range of Ensemble MRMs

2d Heatmap of Value Ranges 3d Depiction of Value Ranges



Results: Synthetic Trajectory Spaces

GCSF, IL-1 and SOFA Scores
TNFa: Real and Synthetic Data
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Context of Control:
Simulation-based Deep Reinforcement Learning (DRL)

= Simulation-based DRL = Game Playing Als

= Hybrid systems => incorporate mechanism-based
simulations to generate synthetic data

= Proposal: Simulation-based DRL for complex control
discovery for biomedical problems (proof-of-concept for
sepsis)

Preparing for the next COVID: Deep Reinforcement Learning trained
Artificial Intelligence discovery of multi-modal immunomodulatory control

Precision medicine as a control problem: Using simulation and deep o ) . . L. .
reinforcement learning to discover adaptive, personalized multi-cytokine [ of systemic inflammation in the absence of effective anti-microbials

therapy for sepsis
Brenden K. Petersen, Jiachen Yang, Will S. Grathwohl, Chase Cockrell, Claudio Santiago, Gary An, Daniel M. Faisso Dale Larie, Gar)’ An, Chase Cockrell
doi: https://doi.org/10.1101/2022.02.17.480940
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Repurposed multi-modal control of sepsis wo
effective antibiotics

= Validated Model of Sepsis => "game” for DRL Al to win
= “Novel Pathogen” => No effective anti-infective => 21 days in ICU
= Hypothetical Sensing = Cytokine State q6 hrs
= Hypothetical Interventions = Augment or inhibit g6 hrs
= “Moves”: Existing approved anti-cytokine meds*
= *TNF, IL1, IL2, IL4, IL8, IL12, IFNg

= Reward Functions
= Step Reward = Reduce aggregate tissue damage
= Terminal Reward = Successful Recovery at 21 days




Results

6000 Training Episodes for Convergence

Baseline Mortality = 39% (61% Recovered) => Controlled Mortality =
10% (90% Recovered)

Required manipulating 6 mediators at variable levels at variable times
(TNF, IL1, IL4, IL8, IL12, IFNQ)

Robustness of Policy => Tested across regions of parameter space

Parameterization Uncontrolled Recovery Rate Controlled Recovery Rate Improvement

Test 1: (0.1,1,3,20) 25% 81% 56%
Test 2: (0.12,1,1,32) 16% 56% 40%
Test 3: (0.08,2,1,23) 19% 52% 33%
Test 4: (0.12,2,1,28) 37% 83% 46%

The baseline and controlled mortality rates (MR) for IIRABM parameterizations upon which the DRL algorithm was not trained are presented here. Parameterizations are defined as (host
resilience, microbial invasiveness, microbial toxigenesis and initial injury size).
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Conclusions

= Crossing Valley of Death: Upstream of QSP

= Rare diseases and “True” Precision Medicine => Share
approaches?

= Need to understand how the system works (mechanisms)

= Need to reconcile individual/biological heterogeneity in the
face of epistemic uncertainty

= Extended Maximal Entropy Principle: Extend to
characterizing unknowns adjacent to represented knowledge

= Be comfortable operating over very large (but not infinite!)
parameter spaces

= Find Robust control strategies (e.g. clinically effective
drugs) => take advantage of biological structure




Bridging The Valley of Death
= Augmented Throughput over the Valley of Death

Translational Systems Biology
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