Maximizing the Digital Twin
L3 INEhl{oydl Technology in Drug

& MEDICINE Development for Rare
Disease

Tina Hernandez-Boussard, PhD, MPH, MS

Associate Dean of Research
Professor of Medicine (Biomedical Informatics)

Stanford University




Overview

Defining a “Digital Twin”
Predictive Models and Cancer Digital Twins
Opportunities and Challenges



The "Digital Twin”




What is a Digital Twin (DT)

» Virtual representation of real-world entities and processes
synchronized at a specified frequency and fidelity.

» Real-time and historical data to represent past, present
and simulate predicted future states

= Motivated by outcomes, tailored to use cases, powered by
Integration, built on data, and guided by domain knowledge
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Digital Twin Use Cases

= Manufacturing
— simulate the performance in real-time 3
» Transportation e
— Planes, trains, automobiles

= | jfe science
— predict disease course or treatment effectiveness

Wl g

Transform business/research by accelerating
holistic understanding

optimal decision-making
effective action Stanford [MEDICINE



Traditional Predictive Medicine

" Rely on select individuals to develop gmmmmmmm
general predictions 1491414 1914141
— Results take time to achieve Teretenerenenen
— Imprecise conditions gmmmmmmm
— Explorations limited by available physical M

models, samples, data

= Populations used to develop predictions
often biased and non-representative

Cancer Patient Digital Twin: CPDT E Stanford |[MEDICINE



The Digital Twins Approach

* Bring predictive analytics to the forefront
— anticipate and prevent events before they occur

» EXxplore possible treatments for an individual
— Using dense data and simulations

= Pursue and refine hypotheses

— Cohort of digital twins for RCT to simulate response for a
population of patients

= Explore conditions and scenarios
— Progressively iterate & integrate understandings & insights

Provide clinical insights for the individual cancer patient



tereferereneren
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Simulate Outcomes Across Treatments

T

Anastrozole Exemestane Letrozole

Tamoxifen

Patient trajectory with current
treatment (continued current
treatment with no changes)

Patient trajectory with no
treatment (never treated)

Patient trajectory when exposed to
various treatments (using a different
treatment method, dosage, length of

time, etc.)

E Stanford |MEDICINE



Changing Landscape for Drug Development

* |n December 2022, FDA recently amended 1938
requirement for animal testing of drugs
— Previously, Rx required testing in animals
— Allows FDA to approve a new drug without animal testing
— Opens avenue to evaluate alternatives
= computational modeling, organoids, organ-on-a-chip and other
emerging approaches
= [Future is developing

— Non-animal models are in their infancy
. — Discussion is underway about adequacy of alternatives .



Digital Twin and Drug Development

= The digital twin technology has the potential to revolutionize
the way drugs are developed and tested

— improving efficiency and reducing costs
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Hovv Does the Cancer Digital Twin Work
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Hernandez-Boussard T; Macklin P; Greenspan EJ; Gryshuk AL; Stahlberg E; Syeda-Mahmood T; Shmulevich I.

Digital twins for predictive oncology will be a paradigm shift for precision cancer care. 2}% Stanford | MEDICINE
Nat Med. 2021 Dec;27(12):2065-2066.



More Accurate & Realistic Disease Models

= Virtual replica of the patient
— Simulate different treatment scenarios & predict outcomes of treatments.
= More effective treatment plans
= Early detection of disease progression.
» [ntegrate data from a variety of sources, multimodal data
— Medical records, genetic data, and behavioral data.

— More comprehensive understanding of the small population, which can
lead to more accurate and effective models.
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Predicting Drug Efficacy

= Digital Twin allows testing before clinical trials
— identify the most promising drug candidates
— reducing the number of unsuccessful clinical trials.

= Faster drug development
— Simulate the effect of a drug on a virtual model of a patient's disease
— Quickly test and optimize drug candidates without RCT

= Real-time monitoring
— Digital Twin Technology can be used to monitor real-time behavior

= quickly identify changes in behavior or health status -> more timely
interventions and treatments.
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Optimize Clinical trials

= Simulate clinical trials and optimize the trial design
— Reducing cost and time
— Improve the chances of success.

= Reduced risk
— ldentify potential safety issues early in development process

= Digital Twin populations
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Personalized Medicine

» Personalized disease models based on the patient's
genetic makeup, lifestyle, and medical history.
— Personalized treatment plans
— Improving efficacy of treatment.

= Creation of a virtual replica of an individual's anatomy,
physiology, and genetics.
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Predictive
Analytics

Increased

: Personalization Accessibility
Representation

The Equitable Digital Twin
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CPDT Challenges

= Data

= Modeling

= High Performance Computing
= Clinical Integration

= Ethical and community challenges
— broad stakeholder involvement, bias and privacy, governance of data
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Data: Quality, volume, and coverage

Gathering and storage of data
Public — healthy & diseased states

Data — diverse populations

— across patient lifespan

« Quality data across multiple

Private Temporal ‘o
Data scales and modalities
« (Curated, harmonized,
standardized
« Stable

* Provenance

individual's genetics, epigenetics, transcriptomics, proteomics, metabolomics,
g b9 P P Stanford |MEDICINE

and microbiome, lifestyle and environmental exposures



Patient Model

Multimodal Data
Diagnosis

Data
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1. Patient described 2. Data are interpreted by
by many data points model to predict state

3. Model output & simulations
interpreted by team

Steyaert, Sandra, et al. "Multimodal data fusion for cancer biomarker E Stanford |MEDICINE

discovery with deep learning." Nature Machine Intelligence (2023): 1-12.



Modeling: harmonizing data, integrating models,
standards

» Mechanistic Models » Data-Driven Models
— Cancer cells & interactions — Cluster trajectories
— Agent-based models — ldentify patterns &
— Pharmacokinetics similarities across patiernts
— Systems biology — More accurate predictions

— Treatment forecasts &
uncertainties



Merge Mechanistic & Data-Driven Models

=  Data assimilation

— use data to update or calibrate a mechanistic model to better reflect the observed
behavior of the system.

=  Hybrid models
— Combine elements of both models, allowing for a more flexible and adaptable model.
= Model ensembles

— Combining multiple models, each with different assumptions and approaches, to
generate a more robust prediction.

= Bayesian inference:

— Probabilistic framework to combine mechanistic and data-driven models, allowing for uncertainty in
both the model structure and the data.
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—ndless Opportunities




Digital Twin in Rare Diseases

= |ndividual Implications
— Provide insights to best predicted treatment combinations
— Improve decision making during treatment

= |mplications beyond the individual

— Accumulated trajectory and outcomes data provide insight on successful
treatments

— Enable health systems to better prepare to respond to real-time health
situations and health disparities

= Realization of potential

— Requires contributions from experimental, clinical and computational
communities
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Digital Twins in the Boussard Lab

=  Prostate Cancer

— Mechanistic models tumor growth and PSA production rates in mice using
mathematical models

— ~20,000 prostate clinical data warehouse with longitudinal PSA
— Ensemble models

» Breast Cancer (TNBC)
— 35,000 breast cancer patients, Oncoshare
— Clustering by patient characteristics, identifying patterns in response
— Simulate different treatment responses by patient signatures

» Postoperative pain management
— Building trajectories after surgery
— Optimize pain management
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Digital Twin for Pain Management
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Clustered Pain Trajectories

Figure 1. Distribution of the Robust Linear Regresson by Cluster and Major Principal Components
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Estimate Trajectory Pattern for Clusters
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In Summary
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Digital Twin Patient Cohorts

Individual Characteristics Patient Cohorts
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