

Maximizing the Digital Twin Technology in Drug Development for Rare Disease

Tina Hernandez-Boussard, PhD, MPH, MS

Associate Dean of Research Professor of Medicine (Biomedical Informatics) Stanford University

#### Overview

- Defining a "Digital Twin"
- Predictive Models and Cancer Digital Twins
- Opportunities and Challenges



#### The "Digital Twin"





### What is a Digital Twin (DT)

- Virtual representation of real-world entities and processes synchronized at a specified frequency and fidelity.
- Real-time and historical data to represent past, present and simulate predicted future states
- Motivated by outcomes, tailored to use cases, powered by integration, built on data, and guided by domain knowledge



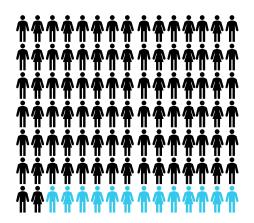
### Digital Twin Use Cases

- Manufacturing
  - simulate the performance in real-time
- Transportation
  - Planes, trains, automobiles
- Life science
  - predict disease course or treatment effectiveness

Transform business/research by accelerating holistic understanding optimal decision-making

effective action







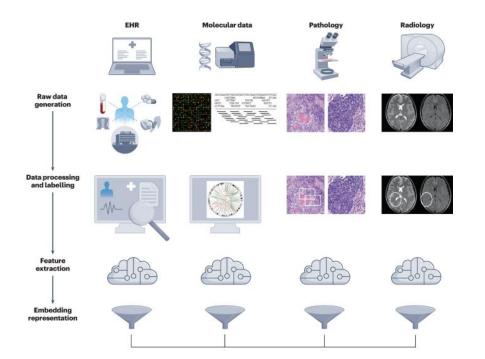


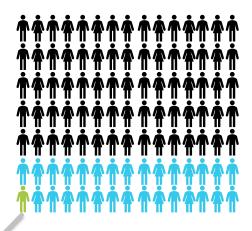

#### **Traditional Predictive Medicine**

- Rely on select individuals to develop general predictions
  - Results take time to achieve
  - Imprecise conditions
  - Explorations limited by available physical models, samples, data
- Populations used to develop predictions often biased and non-representative



Cancer Patient Digital Twin: CPDT





#### The Digital Twins Approach

- Bring predictive analytics to the forefront
  - anticipate and prevent events before they occur
- Explore possible treatments for an individual
  - Using dense data and simulations
- Pursue and refine hypotheses
  - Cohort of digital twins for RCT to simulate response for a population of patients
- Explore conditions and scenarios
  - Progressively iterate & integrate understandings & insights

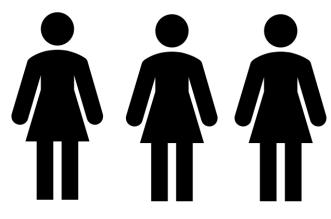
#### Provide clinical insights for the individual cancer patient

#### Digital Twin: Holistic View of Patient








### Simulate Outcomes Across Treatments





Patient trajectory with <u>no</u> treatment (never treated)

Patient trajectory with <u>current</u> treatment (continued current treatment with no changes)



2

Anastrozole

Exemestane

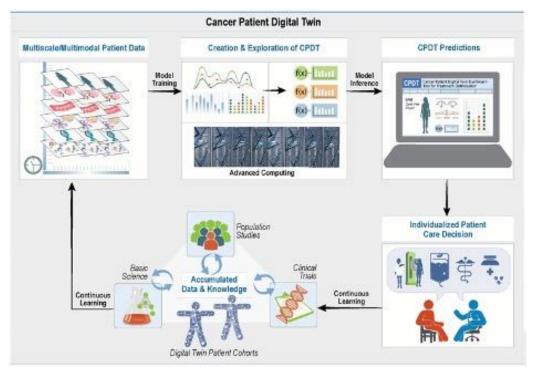
Letrozole

3

Patient trajectory when exposed to various treatments (using a different treatment method, dosage, length of time, etc.)



#### Changing Landscape for Drug Development


- In December 2022, FDA recently amended 1938 requirement for animal testing of drugs
  - Previously, Rx required testing in animals
  - Allows FDA to approve a new drug without animal testing
  - Opens avenue to evaluate alternatives
    - computational modeling, organoids, organ-on-a-chip and other emerging approaches
- Future is developing
  - Non-animal models are in their infancy
  - Discussion is underway about adequacy of alternatives

#### Digital Twin and Drug Development

- The digital twin technology has the potential to revolutionize the way drugs are developed and tested
  - improving efficiency and reducing costs



#### How Does the Cancer Digital Twin Work



#### Patient-tailored models

- Multi-omic, clinical, environmental & social data
- Evaluate and predict the most effective prevention and therapeutic plans for individual patients

Hernandez-Boussard T; Macklin P; Greenspan EJ; Gryshuk AL; Stahlberg E; Syeda-Mahmood T; Shmulevich I. Digital twins for predictive oncology will be a paradigm shift for precision cancer care. Nat Med. 2021 Dec;27(12):2065-2066.



#### More Accurate & Realistic Disease Models

- Virtual replica of the patient
  - Simulate different treatment scenarios & predict outcomes of treatments.
    - More effective treatment plans
    - Early detection of disease progression.
- Integrate data from a variety of sources, multimodal data
  - Medical records, genetic data, and behavioral data.
  - More comprehensive understanding of the small population, which can lead to more accurate and effective models.

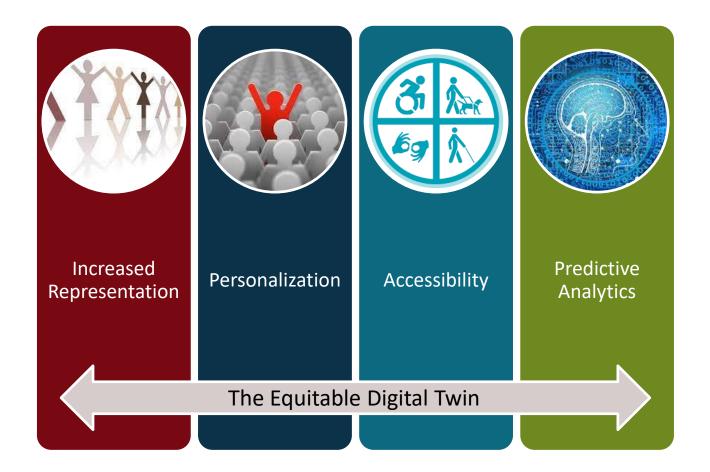


### Predicting Drug Efficacy

- Digital Twin allows testing before clinical trials
  - identify the most promising drug candidates
  - reducing the number of unsuccessful clinical trials.
- Faster drug development
  - Simulate the effect of a drug on a virtual model of a patient's disease
  - Quickly test and optimize drug candidates without RCT
- Real-time monitoring
  - Digital Twin Technology can be used to monitor real-time behavior
    - quickly identify changes in behavior or health status -> more timely interventions and treatments.



#### **Optimize Clinical trials**


- Simulate clinical trials and optimize the trial design
  - Reducing cost and time
  - Improve the chances of success.
- Reduced risk
  - Identify potential safety issues early in development process
- Digital Twin populations

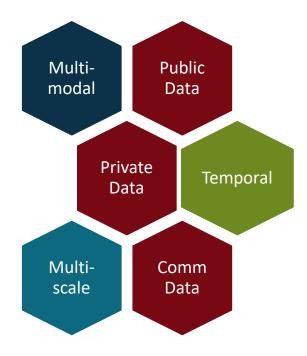


#### **Personalized Medicine**

- Personalized disease models based on the patient's genetic makeup, lifestyle, and medical history.
  - Personalized treatment plans
  - Improving efficacy of treatment.
- Creation of a virtual replica of an individual's anatomy, physiology, and genetics.







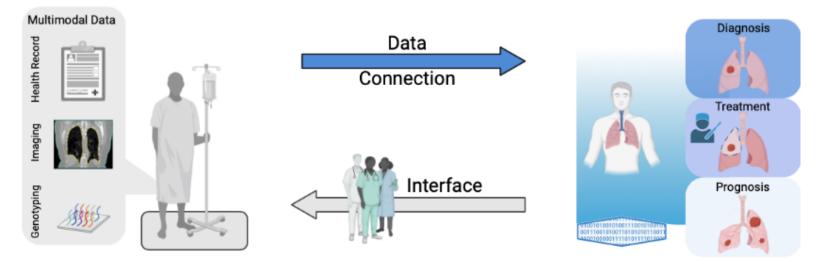

### **CPDT** Challenges

- Data
- Modeling
- High Performance Computing
- Clinical Integration
- Ethical and community challenges
  - broad stakeholder involvement, bias and privacy, governance of data



#### Data: Quality, volume, and coverage




- Gathering and storage of data
  - healthy & diseased states
  - diverse populations
  - across patient lifespan
- Quality data across multiple scales and modalities
- Curated, harmonized, standardized
- Stable
- Provenance

individual's genetics, epigenetics, transcriptomics, proteomics, metabolomics, and microbiome, lifestyle and environmental exposures



#### Patient

#### <u>Model</u>



1. Patient described by many data points

2. Data are interpreted by model to predict state

## 3. Model output & simulations interpreted by team

Steyaert, Sandra, et al. "Multimodal data fusion for cancer biomarker discovery with deep learning." *Nature Machine Intelligence* (2023): 1-12.



# Modeling: harmonizing data, integrating models, standards

- Mechanistic Models
  - Cancer cells & interactions
  - Agent-based models
  - Pharmacokinetics
  - Systems biology

#### Establish HPC

Massive amounts of data Explore simulation trajectories Capture, model, predict in real-time

- Data-Driven Models
  - Cluster trajectories
  - Identify patterns & similarities across patients
  - More accurate predictions
  - Treatment forecasts & uncertainties



#### Merge Mechanistic & Data-Driven Models

- Data assimilation
  - use data to update or calibrate a mechanistic model to better reflect the observed behavior of the system.
- Hybrid models
  - Combine elements of both models, allowing for a more flexible and adaptable model.
- Model ensembles
  - Combining multiple models, each with different assumptions and approaches, to generate a more robust prediction.
- Bayesian inference:
  - Probabilistic framework to combine mechanistic and data-driven models, allowing for uncertainty in both the model structure and the data.



**Endless Opportunities** 

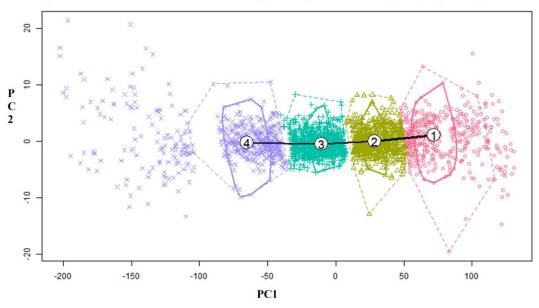
#### Digital Twin in Rare Diseases

- Individual Implications
  - Provide insights to best predicted treatment combinations
  - Improve decision making during treatment
- Implications beyond the individual
  - Accumulated trajectory and outcomes data provide insight on successful treatments
  - Enable health systems to better prepare to respond to real-time health situations and health disparities
- Realization of potential
  - Requires contributions from experimental, clinical and computational communities



#### Digital Twins in the Boussard Lab

- Prostate Cancer
  - Mechanistic models tumor growth and PSA production rates in mice using mathematical models
  - ~20,000 prostate clinical data warehouse with longitudinal PSA
  - Ensemble models
- Breast Cancer (TNBC)
  - 35,000 breast cancer patients, Oncoshare
  - Clustering by patient characteristics, identifying patterns in response
  - Simulate different treatment responses by patient signatures
- Postoperative pain management
  - Building trajectories after surgery
  - Optimize pain management




#### **Digital Twin for Pain Management**



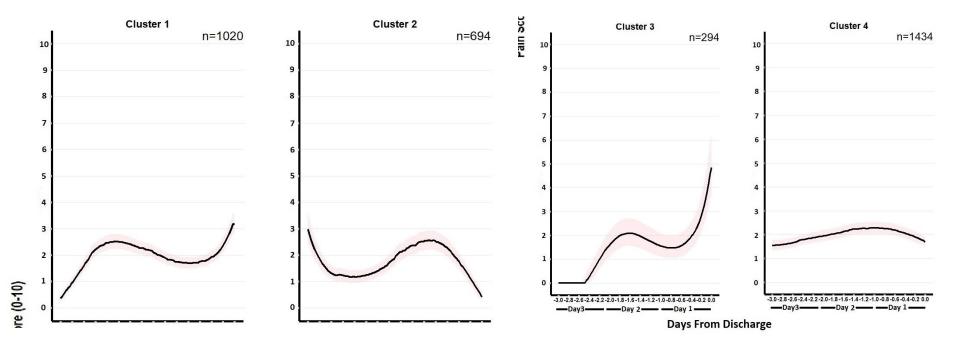
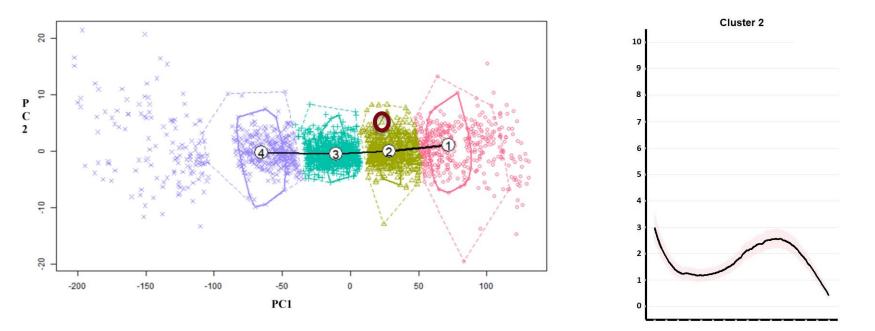
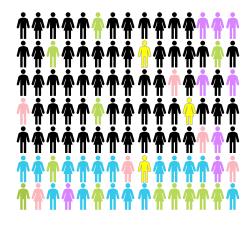

#### **Clustered Pain Trajectories**

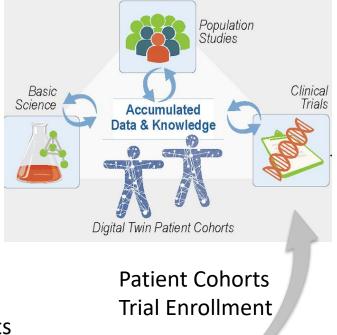
Figure 1. Distribution of the Robust Linear Regresson by Cluster and Major Principal Components






#### Estimate Trajectory Pattern for Clusters








### In Summary





Stanford MEDICINE

Individual Characteristics

**Individual Predictions & Treatments** 







#### boussard-lab.stanford.html



boussard@stanford.edu

