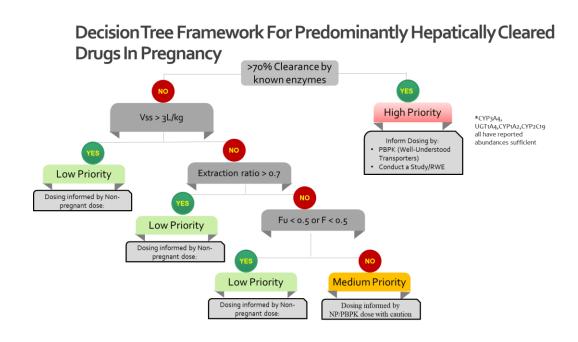
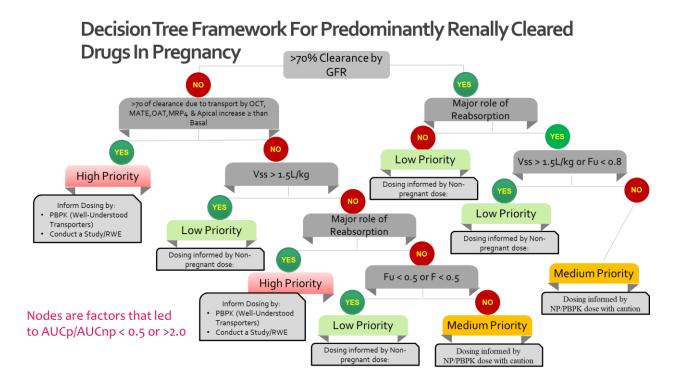


A Model-Informed Framework for Prioritizing Drug Studies in Pregnancy

Mathangi Gopalakrishnan, PhD, FCP


Acknowledgement


This research is supported by the US Food and Drug Administration (FDA) of the US Department of Health and Human Services (HHS) as part of a financial assistance award through the MCERSI grant (Uo1FDo05946 totaling \$263,551 with 100% funded by FDA/HHS).

Disclaimer

The contents are those of the author(s) and do not necessarily represent the official views of, nor an endorsement, by FDA/HHS, or the U.S. Government

A Decision Tree Framework That Prioritizes The Drug To Be Studied In Pregnancy Is Proposed

Note: The drugs here refer to medications that are commonly prescribed to treat acute/chronic conditions during pregnancy and **does not refer** to drugs specifically used to treat pregnancy related conditions

Medication Use In Pregnancy Is Widespread & Lack Of Evidence Based Recommendations

- In the US, 9 out of 10 women take medication during pregnancy
- 80% of pregnant women take ≥ 1 medication during first trimester

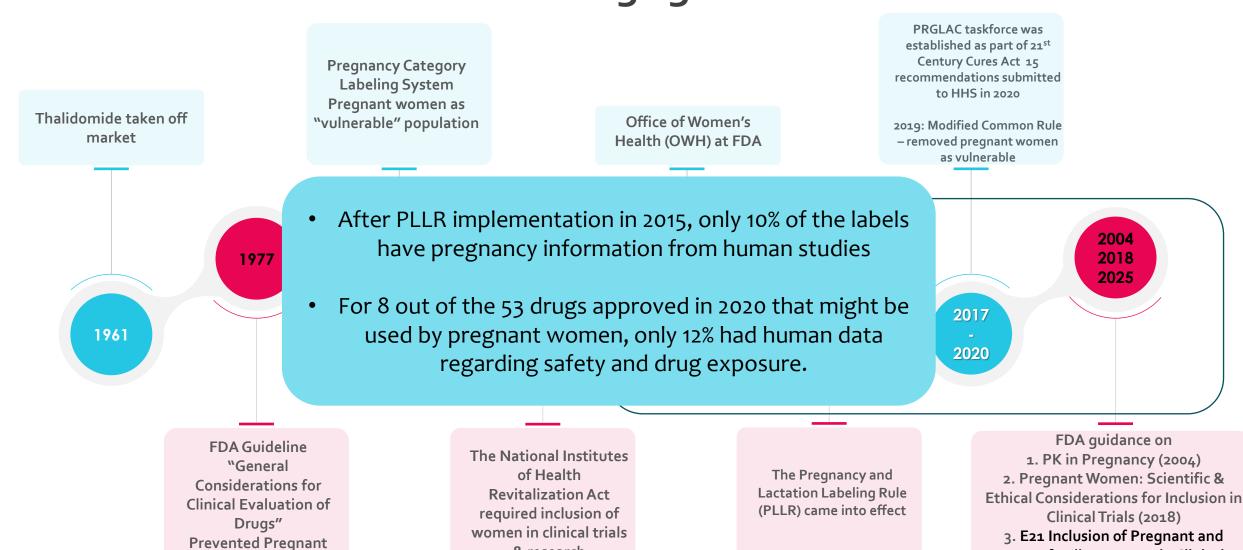
Off-label use

 90% of medications approved do not have labeling for pregnant women Lack of pregnancy drug trials (PDT)

- Only 0.32% of the active registered trials are PDT, in a 2014 global survey
- Among active PDTs, only 4.4% had pharmacokinetic (PK) evaluations
- Only 1.3% of PK studies included pregnant women

https://www.cdc.gov/pregnancy/meds/treatingfortwo/index.html

Mazer-Amirshahi M, Samiee-Zafarghandy S, Gray G, van den Anker JN. Trends in pregnancy labeling and data quality for US-approved pharmaceuticals.


American Journal of Obstetrics and Gynecology. 2014;211(6):690.e1-690.e11.;Scaffidi J, Mol B, Keelan J. The pregnant women as a drug orphan: a global survey of registered clinical trials of pharmacological interventions in pregnancy. BJOG: An International Journal of Obstetrics & Gynaecology. 2017;124(1):132-140.;

Byrne JJ, Saucedo AM, Spong CY. Evaluation of Drug Labels Following the 2015 Pregnancy and Lactation Labeling Rule. JAMA Network Open. 2020;3(8):e2015094.

Ren Z, Børner AA, Pawlyk AC. Drug development research in pregnant and lactating women. American Journal of Obstetrics and Gynecology. 2021;225(1):33-42. doi:10.1016/j.ajog.2021.04.227

CTM-UMB

Timeline Of FDA Actions Related To Inclusion Of Pregnant Women In Clinical Trials – Recent Initiatives Are Encouraging

Ren Z, Bremer AA, Pawlyk AC. Drug development research in pregnant and lactating women. American Journal of Obstetrics and Gynecology.

2021;225(1):33-42. doi:10.1016/j.ajog.2021.04.227; https://www.fda.gov/media/71353/download; https://www.fda.gov/media/112195/download?attachment

Caritis SN, Venkataramanan R. Obstetrical, fetal, and lactation pharmacology-a crisis that can no longer be ignored. Am J Obstet Gynecol 2021;225:10–20.

Breastfeeding Women in Clinical

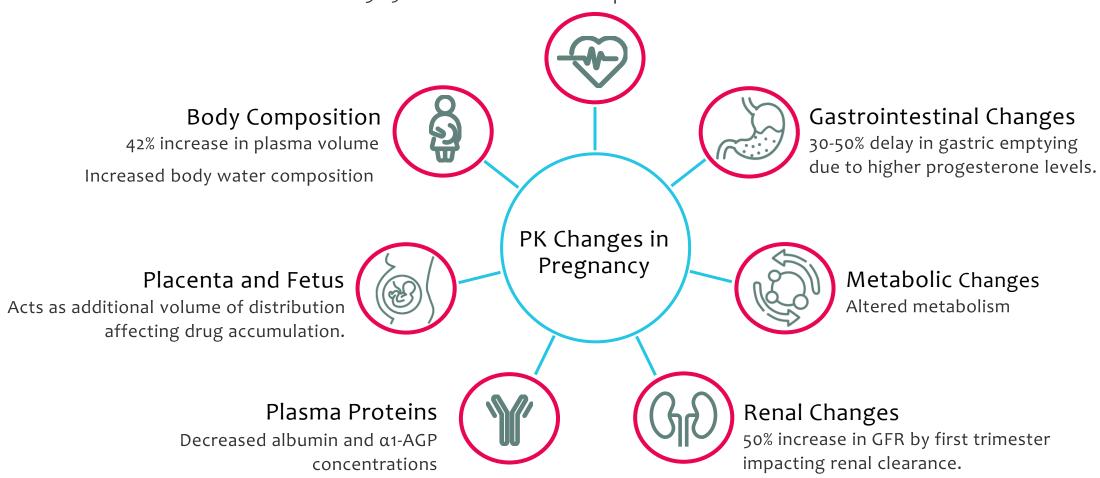
Trials (2025)

CTM-UMB

& research

MCERSI research

Women in


participating in Phase

I/II trials

Pregnancy Leads To Physiological Changes That May Affect Drug Exposure & Clinical Response

Cardiovascular Changes

30-50% increase in cardiac output and renal blood flow.

Physiological Changes During Pregnancy Can Require Changes From The Non-pregnant Dose

Indinavir

- Lower concentrations in 2nd and 3rd trimester
- 30% fell below minimum recommended AUC to manage viral load

Lamotrigine

- Concentrations in second trimester reduced by >50%
- Lead to a 75% increase in seizure frequency

Sertraline

- Concentrations in second trimester significantly decreased
- 50% of subjects experienced increased recurrent depressive symptoms

Lack of clear guidance or no information on dosing in pregnancy in drug labels

Petrenaite V, Sabers A, Hansen-Schwartz J. Individual changes in lamotrigine plasma concentrations during pregnancy. Epilepsy Research. 2005;65(3):185-188. doi:10.1016/j.eplepsyres.2005.06.0041. Cressey TR, Best BM, Achalapong J, et al. Reduced indinavir exposure during pregnancy. British Journal of Clinical Pharmacology. 2013;76(3):475-483. doi:10.1111/bcp.120781. Sit DK, Perel JM, Helsel JC, Wisner KL. Changes in antidepressant metabolism and dosing across pregnancy and early postpartum. J Clin Psychiatry. 2008;69(4):652-658. doi:10.4088/jcp.v69n0419

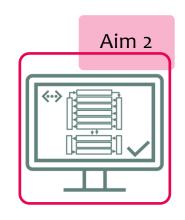
Strong Need To Address Current Lack Of Evidence Based Information For Medication Use In Pregnancy – But HOW?

- No incentive for sponsors to conduct trials in pregnancy
- No policy enforcing conduct of trials currently

Only 7% of the active PDT sponsored by Pharma Should PK trials be conducted for each of drugs in pregnancy?

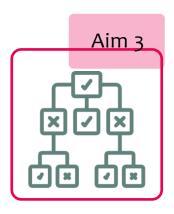
Can we prioritize drugs to be studied in pregnancy?

Academic PK trials in pregnancy take at least 3-5 years to complete


The trials have not resulted in labeling changes for use in pregnancy

A Drug Prioritization Decision Tree Framework In Pregnancy Can Guide PK Trials

Identify prescription drugs commonly used in pregnant women


- Data collection from electronic health records
- Physician Expertise

Model-informed framework to set up the pregnancy physiological system

Develop and verify PBPK models (5 drugs)

- Literature search
- Model development and validation
 - Nonpregnant Women
 - Pregnant Women

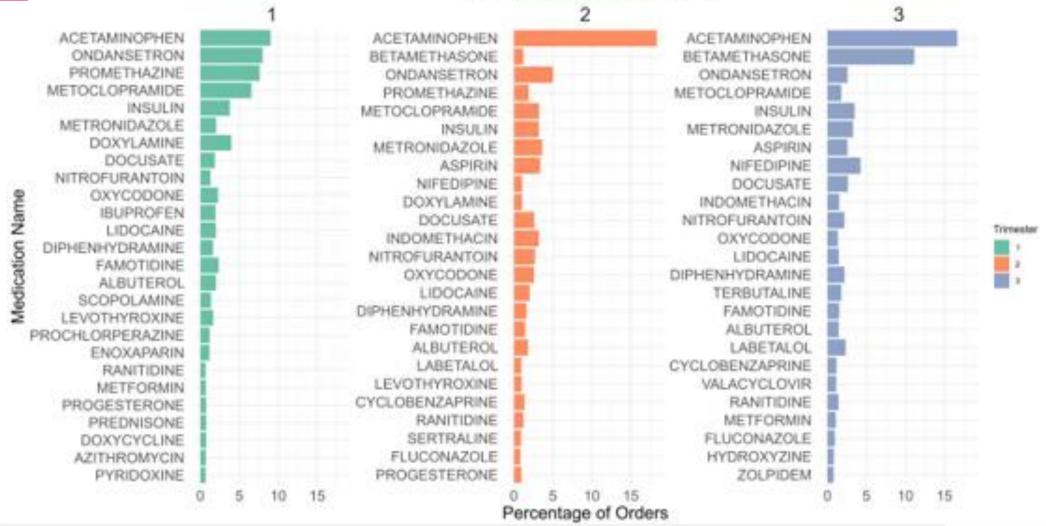
Establish a drug prioritization framework

- Compare exposures across pregnant and non-pregnant women
- Develop prioritization framework

PBPK: Physiologically based pharmacokinetic

Electronic Medical Records (2016 – 2022) From University Of Maryland Medical System (UMMS) Informed The 50 Commonly Prescribed Drugs And Their Use Patterns In Pregnant Women

UMMS consists of 11 hospitals serving 25% of all hospital care in Maryland


1,422,379 orders 186,007 encounters 39,844 pregnant women 16 unique medication orders per woman

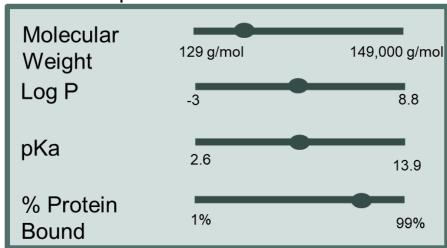
MCERSI research

Antiemetics, Gastrointestinal Drugs More Predominant In First Trimester Vs Analgesics, Antihypertensives In The Third Trimester

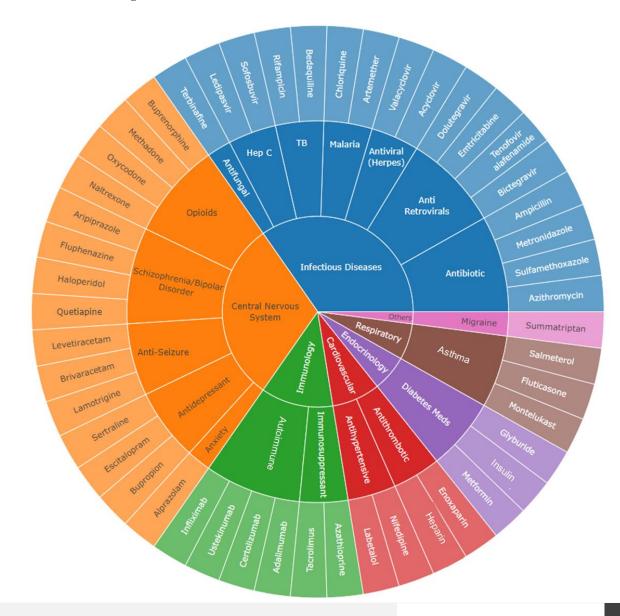
Seven Key Medications with High Clinical Relevance in Pregnancy Demonstrated Frequent Within-patient Dose Modifications

Drug name	Therapeutic area	Women with dose change*	Women with dose change who had dose increase*	Average fold changes when increase*	Average fold change when decrease*
Nifedipine	Antihypertensive	40%	65%	2.2 x	4.2 x
Levothyroxine	Hormone	49%	71%	5.5 x	0.70 x
Levetiracetam	Anticonvulsant	41%	73%	3.0 x	0.53 x
Metformin	Anti-Diabetic	34%	76%	1.9 x	0.52 x
Methyldopa	Antihypertensive	43%	84%	2.0 x	0.50 x
Sertraline	Antidepressant	33%	67%	3.0 x	0.49 x
Prochlorperazine	Antiemetic	30%	38%	2.4 x	0.45 x

MCERSI research CTM-UMB

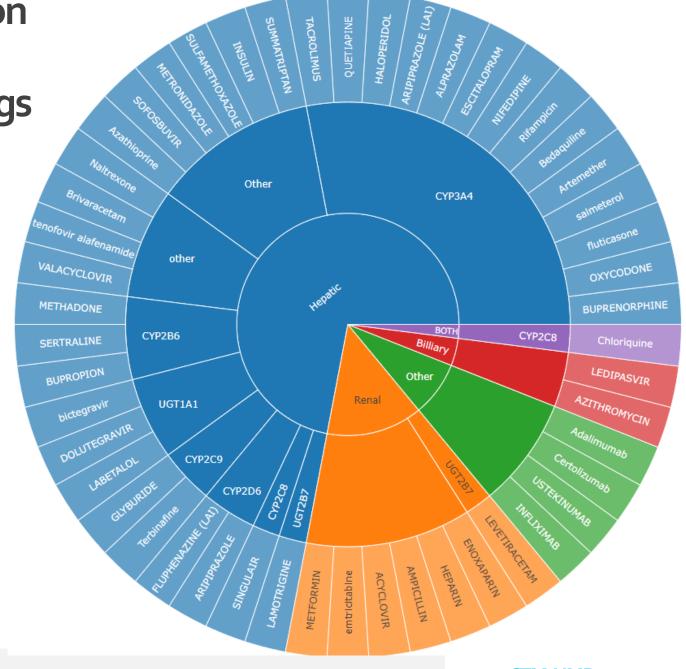

12

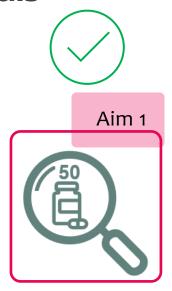
50 Drugs Encompassed Across 7 Therapeutic Areas with Varied


Physico-Chemical Properties

Physicochemical Drug Properties

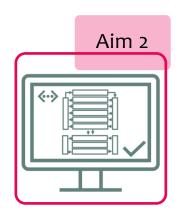
Significant Transporters


- 28% transported by P-gp
- 12% transported by OCT1
- 12% Transported by OCT2
- 6% Transported by MATE enzymes
- 8% Transported by other Proteins



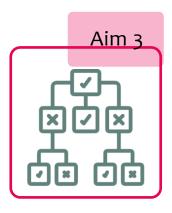
Hepatic & Renal Elimination Mechanisms were Predominant in the 50 drugs

- 4 Primary Elimination
 Mechanisms
- 9 primary enzymes
- Other hepatic pathways
 - Oxidation
 - Reduction
 - NAT enzymes
 - CES1
 - MAO
 - HGPRT
- >20 drugs with multiple significant elimination pathways

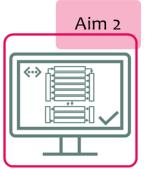


A Drug Prioritization Decision Tree Framework in Pregnancy Can Guide PK Trials

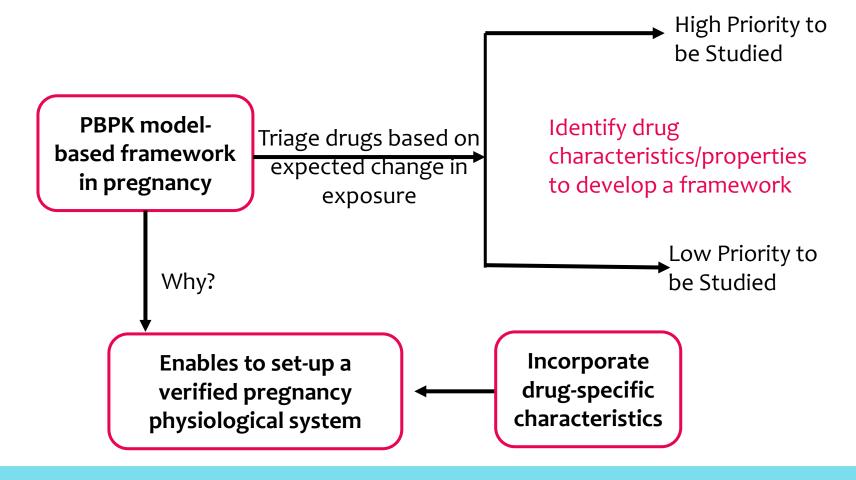
Identify prescription drugs commonly used in pregnant women


 50 commonly prescribed drugs across 7 main therapeutic areas, wide range of physiochemical properties and elimination mechanisms

Model-informed framework to set up the pregnancy physiological system

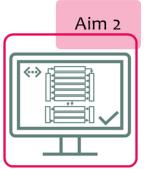

Develop and verify PBPK models (5 drugs)

- Literature search
- Model development and validation
 - Nonpregnant Women
 - Pregnant Women



Establish a drug prioritization framework

- Compare exposures across pregnant and non-pregnant women
- Develop prioritization framework



Develop a Model-Informed Framework to Triage Drugs to be Studies in Pregnancy

We aimed to develop a reproducible generalizable modeling framework

MCERSI research CTM-UMB

5 Representative Drugs Based on their Frequent Prescription Patterns & Diverse Physicochemical and Therapeutic Aspects

Cefazolin

Renally cleared
Distinct transporter
involved (OAT1 &3) & MRP4

Glyburide

Hepatically cleared CYP3A4+CYP2C19+CYP2C9

Rifampin

Hepatically cleared AADAC

Metformin

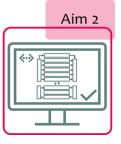
Renally cleared
Distinct transporter
involved (OCT2, MATE)

5 representative drugs with varied physico-chemical features and mechanisms of elimination from the 50 drugs that had PK data for both pregnant and non-pregnant

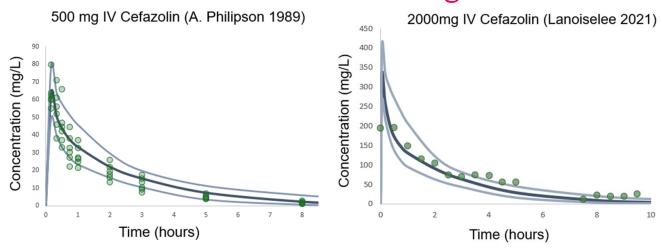
Buprenorphine

Hepatically cleared CYP3A4 + CYP2C8 + UGT1A1+UGT1A3+UGT2B7

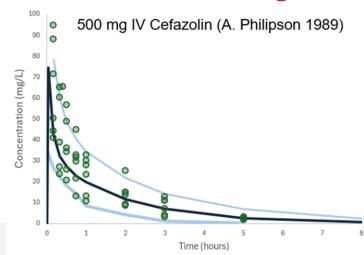
Develop & Verify Non-pregnant Model

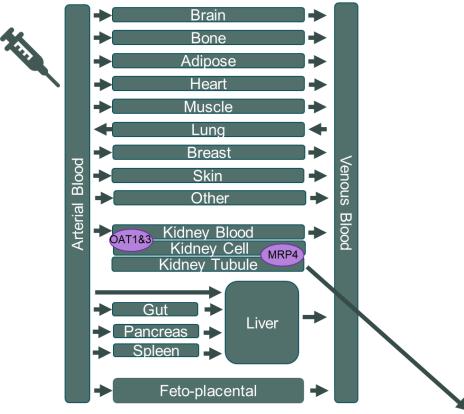


Develop & Verify Pregnant Model

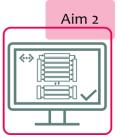


Integrated Scientific M&S & AI/ML Tool

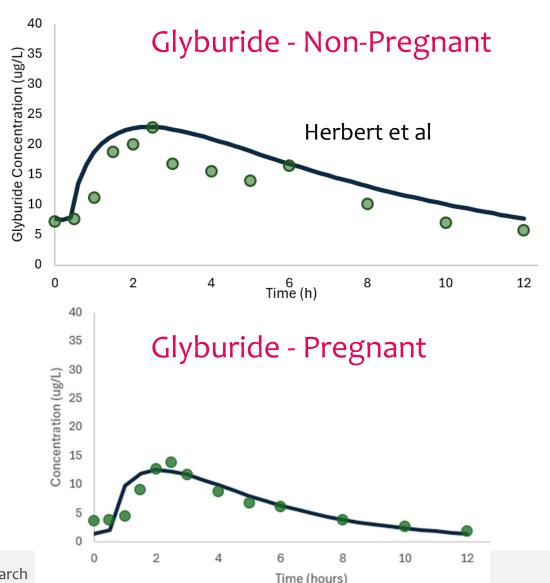


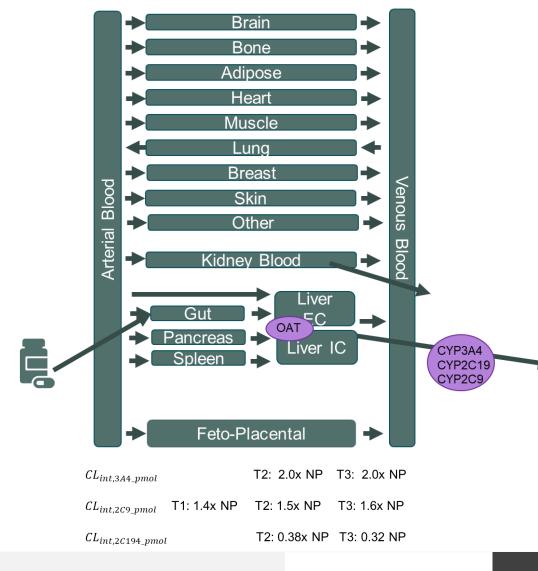

Exposures adequately captured by the PBPK model for all the 5 Drugs under Non-Pregnant & Pregnant Conditions

Cefazolin - Non-Pregnant

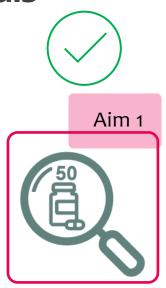


Cefazolin - Pregnant

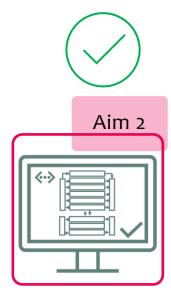




Renal OAT3 pregnancy fold Change $1*(1+0.195*GA-0.0093*GA^2+0.0001154*GA^3$

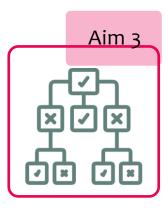


Exposures adequately captured by the PBPK model for all the 5 Drugs under Non-Pregnant & Pregnant Conditions

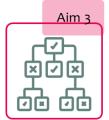


A Drug Prioritization Decision Tree Framework in Pregnancy Can Guide PK Trials

Identify prescription drugs commonly used in pregnant women


 50 commonly prescribed drugs across 7 main therapeutic areas, wide range of physiochemical properties and elimination mechanisms

Model-informed framework to set up the pregnancy physiological system


Develop and verify PBPK models (5 drugs)

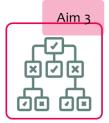
 A validated, reproducible pregnancy PBPK system was developed using the 5 representative drugs

Establish a drug prioritization framework

- Compare exposures across pregnant and non-pregnant women
- Develop prioritization framework

Drug Properties that May Impact Pregnant:Non-Pregnant Ratio

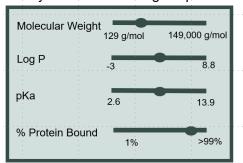
Expected Impact: High


- F_{up}: During pregnancy plasma protein levels decrease significantly.
- Degree and type of Intrinsic Hepatic Clearance: Enzymes like CYP3A4 or UGTs may be induced during pregnancy.
- Degree and type of Renal clearance: GFR is increased as is some transporter activity

Expected Impact: Medium

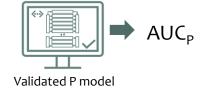
- logP: affects partitioning into increased fat stores
- Volume of Distribution

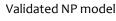
Expected impact: Low


- B:P: the drop in hematocrit can play a large role in highly RBC partitioned drugs
- pKa: May affect partitioning into newly forming tissues
- Molecular size: impacts placental transfer and tissue distribution

PBPK Model-based Simulations Performed To Establish The Decision Framework

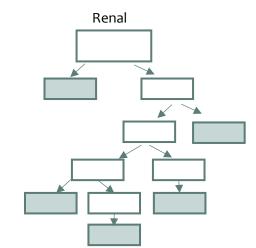
Drug Properties

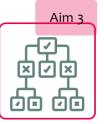

Physicochemical Drug Properties


Significant Transporters

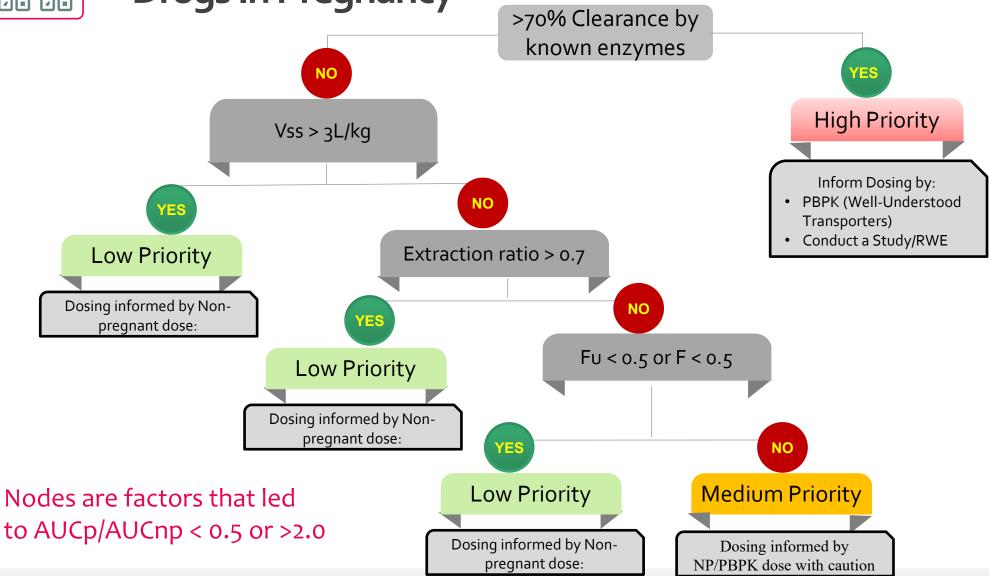

- 28% transported by P-gp
- 12% transported by OCT1
- 12% Transported by OCT2
- 6% Transported by MATE enzymes
- 8% Transported by other Proteins

Simulations

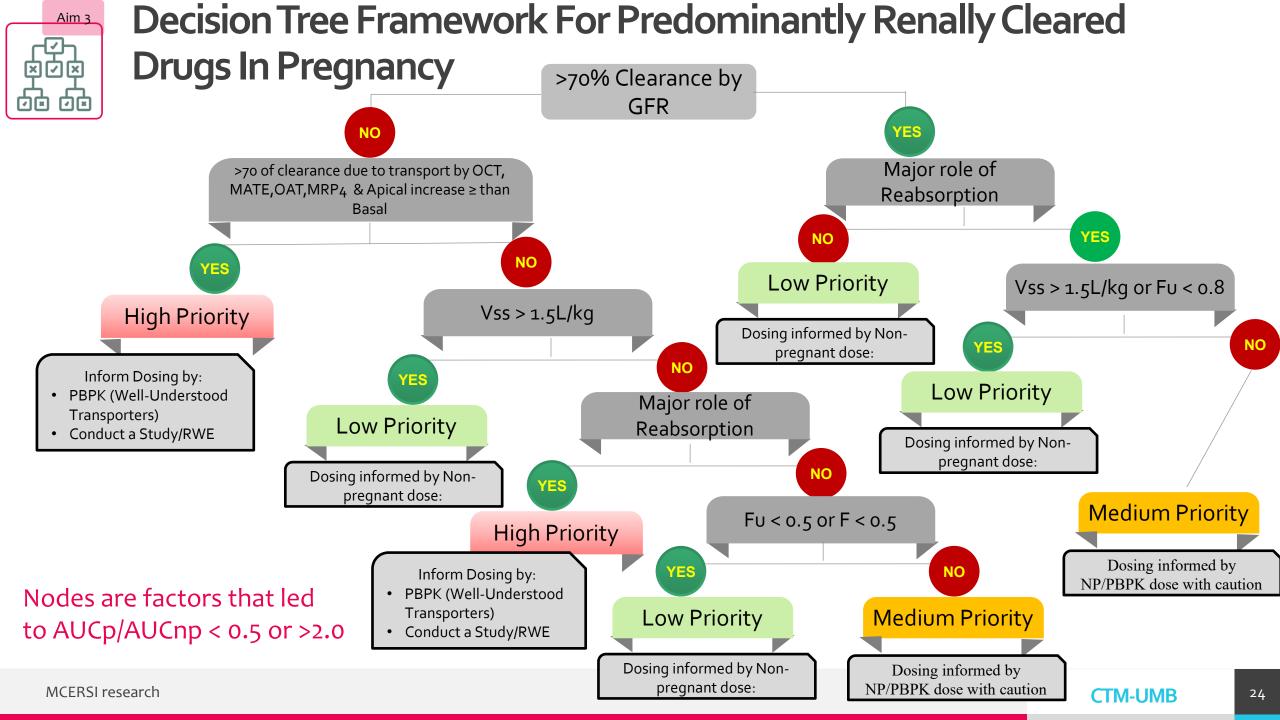


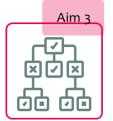


Develop Framework



Verify




Decision Tree Framework For Predominantly Hepatically Cleared Drugs In Pregnancy

*CYP3A4, UGT1A4,CYP1A2,CYP2C19 all have reported abundances sufficient

MCERSI research

Decision Tree Framework Correctly Predicted Pregnant/Nonpregnant AUC Ratios For 10 Drugs

Drug Name	Decision Tree	Decision Tree Prediction	Observed AUCp/AUCnp	
Indinavir	Hepatic	High Priority	<0.5	
Lamotrigine	Hepatic	High Priority	<0.5	
Lithium	Renal	High Priority	<0.5	
Nifedipine	Hepatic	High Priority	<0.5	
Levetiracetam	Renal	Moderate Priority	0.3-0.6	
Ampicillin	Renal	Moderate(IV) Low(oral)	0.66 (IV) 0.65 (Oral)	
Emtricitabine	Renal	Moderate Priority	>0.5 <2.0	
Gentamycin	Renal	Low Priority	>0.5 <2.0	
Metronidazole	Metabolism	Moderate Priority	>0.5 <2.0	
Artemether	Hepatic	High Priority	<0.5	

MCERSI research

How the Drug Prioritization Decision Tree Framework Can be Applied during Drug Development?

	Where can it help?	Benefit to sponsors
Pre-marketing	Can enable to identify compounds likely to have meaningful changes in PK exposures and support early-stage drug triaging	Sponsors can upfront plan their studies or a method to derive dosing recommendations for pregnancy
For drugs already in the market (post-marketing)	Can help prioritize drugs to be studied	Provides guidance for academic researchers to pursue research (opportunistic PK sampling)

What the decision tree does not address currently	Purely based on PK exposure changes
	Assumes no change in exposure- response relationship during pregnancy
	To be used with caution for narrow therapeutic index drugs
	Fetal exposure, developmental pharmacology for the fetus not
<mark>rct</mark>	accounted

FDA SMEs

Dr. Qi Liu (FDA/OTS)

Dr. Yuching Yang (FDA/OCP)

UMB

Dr. Brooke Langevin

Dr. Katrina Mark

CTM members

UMB-MCERSI

Dr. Jim Polli Ms. Dana Hammell

Compared to Literature

TABLE 1 List of medicines commonly used in pregnancy in the UK.

nesthetics	Antidepressants (cont')	HIV (cont')	Diabetes medicines (
Etomidate	Sertraline	Darunavir/cobicistat	Tolbutamide
Ketamine	Tranylcypromine	Darunavir/ritonavir	Endocrine medicines
Propofol	Trazodone	Dolutegravir	Thyroxine
Thiopentone	Trimipramine	Doravirine	Anti-epileptics
Antibiotics	Triptafen	Efavirenz	Brivaracetam
Amikacin	Venlafaxine	Elvitegravir/cobicistat	Buprenorphine
Amoxicillin	Vortioxetine	Emtricitabine	Carbamazepine
Ampicillin	Anti-emetics	Lamivudine	Clobazam
Azithromycin	Cyclizine	Nevirapine	Clonazepam
Benzylpenicillin	Doxylamine/pyridoxine	Raltegravir	Diazepam
Cefaclor	Meclozine	Rilpivirine	Eslicarbazepine
Cefadroxil	Metoclopramide	Tenofovir alafenamide	Ethosuximide
Cefalexin	Ondansetron	Tenofovir DF	Felbamate
Cefixime	Phenothiazines	Zidovudine	Gabapentin
Cefotaxime	Promethazine	HSV	Lacosamide
Cefradrine	Antifungal	Acyclovir	Lamotrigine
Ceftazidime	Amphotericin	Valiciclovir	Levetiracetam
Ceftriaxone	Clotrimazole	Influenza_	Lorazepam
Cefuroxime	Antihistamines	Oseltamivir	Midazolam
Clindamycin	Cetirizine	Zanamivir	Oxcarbazepine

Coppola et al. 2022

Cefazolin	Metformin	Glyburide	Rifampin	Buprenorphine
Important Drug Properties Renally Cleared GFR Tubular Secretion (~50-80%) 77.5% Protein bound Monoprotic Acid pKa 3.6 logP58 Final Kp_scalar used = 2.2	Important Drug Properties Renally Cleared GFR Tubular Secretion Alonoprotic Base Monoprotic Base Kan 11.8 IogP -1.43 Final Kp_scalar used = 0.8	Important Drug Properties • Metabolized • CYP3A4 +CYP2C19+ CYP2C9 • ~ 98% bound • Weak Monoprotic Acid/Neutral • pKa 5.11 • logP 3.07 • Final Kp_scalar used = 0.06	Important Drug Properties • Metabolized by AADAC • 80% bound • Zwitter Ion • pKa(Acid) 1.7 • pKa(Base) 7.9 • logP 2.7 • Final Kp_scalar Used = 0.094	Important Drug Properties Metabolized 96% bound pka 8.31 logP 4.98 Final Kp_scalar Used = 2.8 Overall sublingual Bioavailability 30% CYP3A4 CYP2C8 UGT1A1 UGT1A3 UGT2B7

MCERSI research