Al in Drug Development

-CDER Office of Medical Policy

Tala Fakhouri PhD MPH February 17th, 2023

Image: https://www.imeche.org/news/news-article/the-human-s-digital-twin

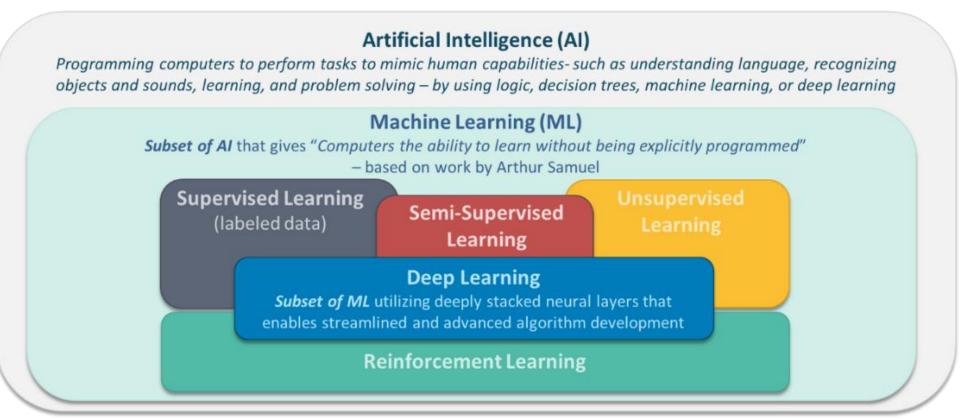
CDER AI Definitions are important: What is AI?

Artificial Intelligence (AI): a branch of computer science, statistics, and engineering that uses algorithms or models to perform tasks and exhibit behaviors such as learning, making decisions and making predictions

Final Document

IMDRF/AIMD WG/N67

Machine Learning-enabled Medical Devices: Key Terms and Definitions


AUTHORING GROUP

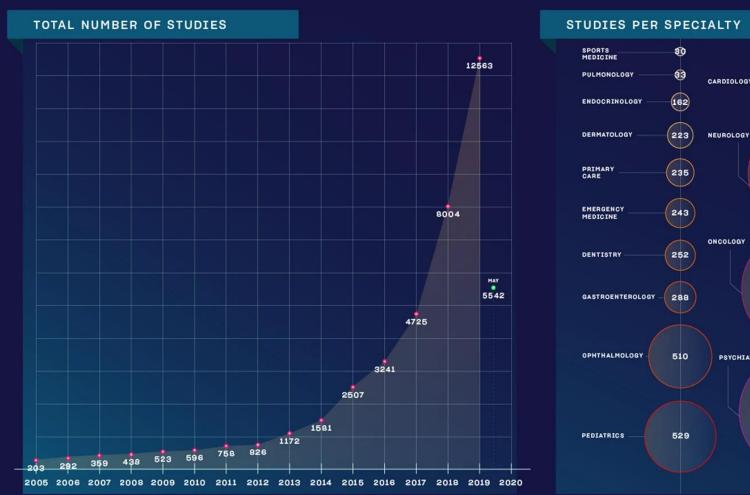
Artificial Intelligence Medical Devices (AIMD) Working Group

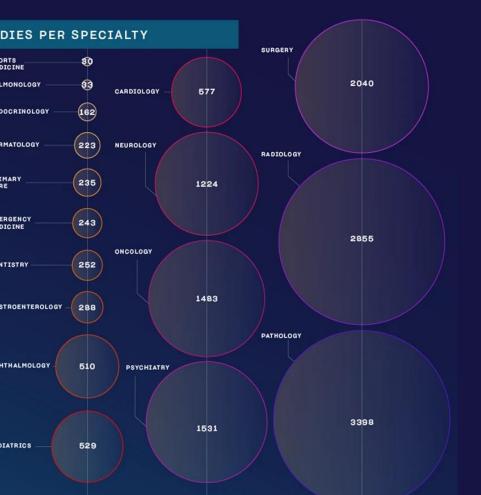
FD/

CDER AI Definitions are important: What is ML?

Machine Learning (ML): A subset of AI that allows ML models to be developed by ML training algorithms through analysis of data, without models being explicitly programmed

X The descriptions within the diagram are not definitions, and are included to convey a general sense of the technology.

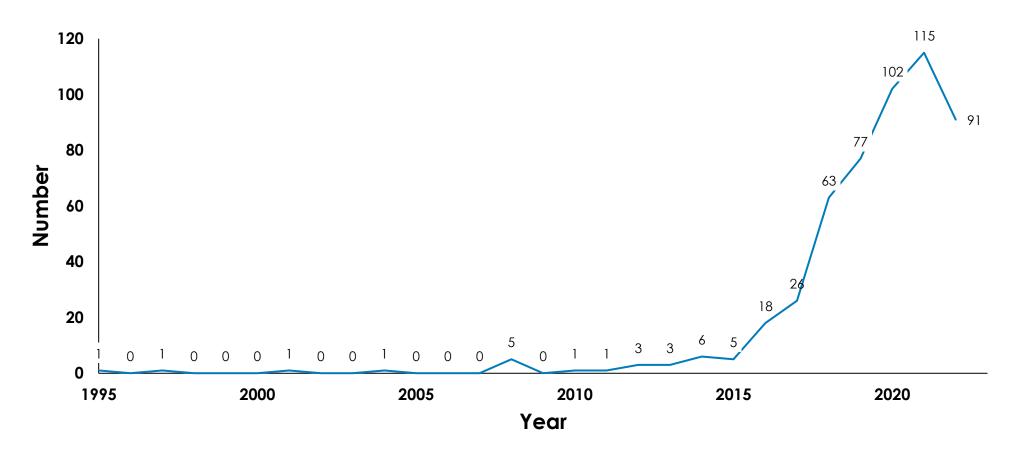

FD

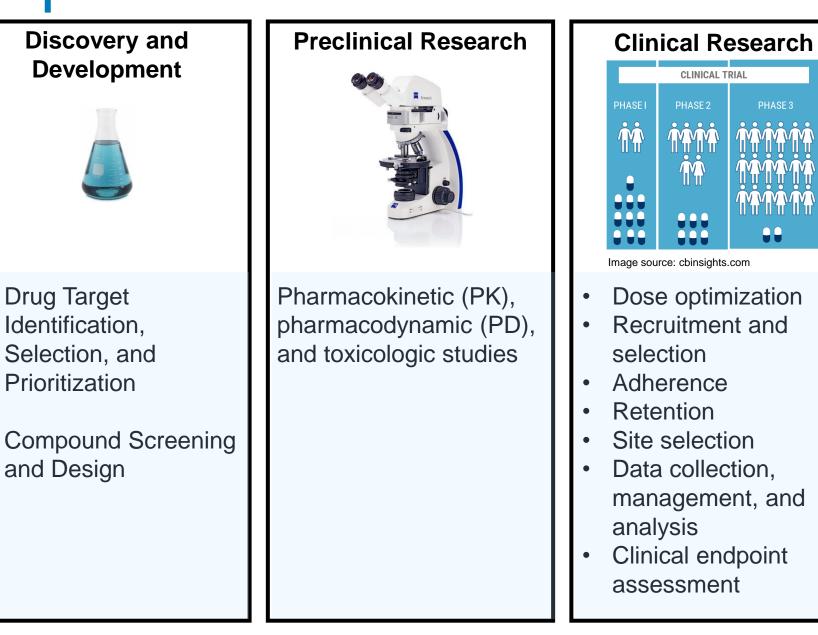

CDER AI Drivers behind the growth in AI health applications

- Large datasets (e.g., administrative data, EHRs, registries, etc.)
- Diverse and multimodal datasets (e.g., DHTs, genomic, laboratory, imaging, etc.)
- Improvements in data standards (e.g., ICD-10, LOINC, NDCs, UMLS, FHIR/HL7, OHDSI, etc.)
- Improved data interoperability and healthcare data exchange
- Increased computing power
- Advancements in data privacy persevering approaches
- Breakthroughs in methods (e.g., deep neural networks, reinforcement learning, Generative adversarial networks, Variational autoencoders, etc.) and causal inference approaches (e.g., structural causal models and causal Bayesian networks)

CDER AI Number of medical AI studies by year from 2010 to 2020; and by medical specialties

MACHINE AND DEEP LEARNING STUDIES ON PUBMED.COM





CDER AI FDA's <u>CDRH</u> has authorized over 500 AI/ML enabled devices

Number of AI/ML-enabled devices by year of FDA decision date

All use across the drug development landscape CDER AI

Monitoring

PHASE 3

Manufacturing and

Post-Market Safety

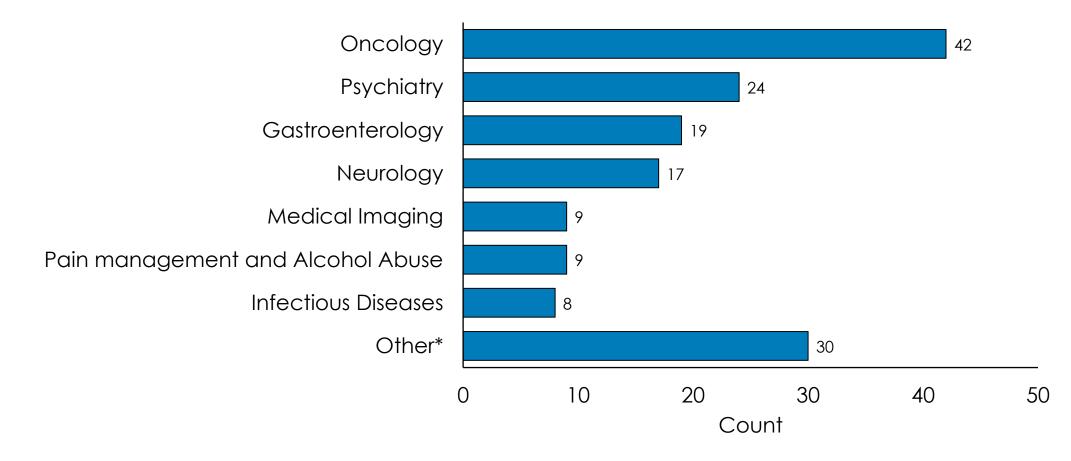
- Advanced pharmaceutical manufacturing
- Post-market safety surveillance or pharmacovigilance (PV)

CDER AI FDA's <u>CDER</u> has seen a rapid increase in drug regulatory submissions with AI/ML components

Count of regulatory submissions for drug development with key terms "machine learning" or "artificial intelligence" from 2016 to 2021

		Year				
Submission Type (n)	2016	2017	2018	2019	2020	2021
IND	1	1	2	5	11	128
NDA, ANDA, BLA	-	-	1	2	2	2
DDT, CPIM	_	-	-	-	1	2
		Year				
Drug Development Stage (n)	2016	2017	2018	2019	2020	2021
Discovery and Development	-	-	-	-	1	3
Preclinical Research	-	-	-	-	-	8
Clinical Research	1	1	3	5	12	118
Post-Market Safety Monitoring	_	-	-	2	1	3

ABBREVIATIONS: Investigational New Drug (IND); New Drug Application (NDA), Abbreviated New Drug Application (ANDA),

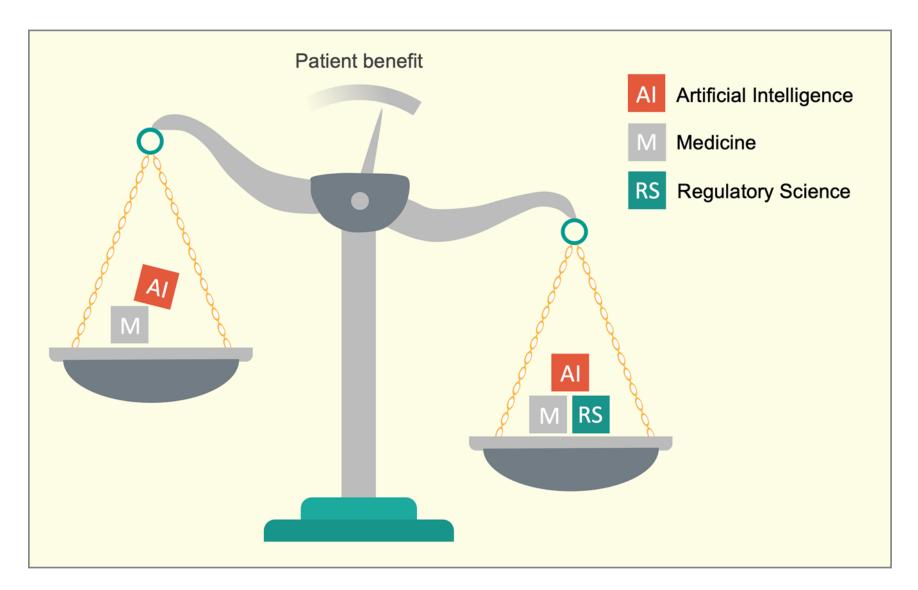

Biologics License Application (BLA); Drug Development Tool (DDT) Qualification Programs, Critical Path Innovation Meeting (CPIM)

SOURCE: Internal databases maintained by the FDA Center for Drug Evaluation and Research (CDER)

Q i Liu, R. H., Julie Hsieh, Hao Zhu, Mo Tiwari, Guansheng Liu, Daphney Jean, M. Khair ElZarrad, Tala Fakhouri, Steven Berman, Billy Dunn, Matthew Diamond, and Shiew-Mei Huang (2022). Landscape Analysis of the Application of Artificial Intelligence and Machine Learning in Regulatory Submissions for Drug Development from 2016 to 2021. Clinical Pharmacology & Therapeutics. (Accepted May 2022)

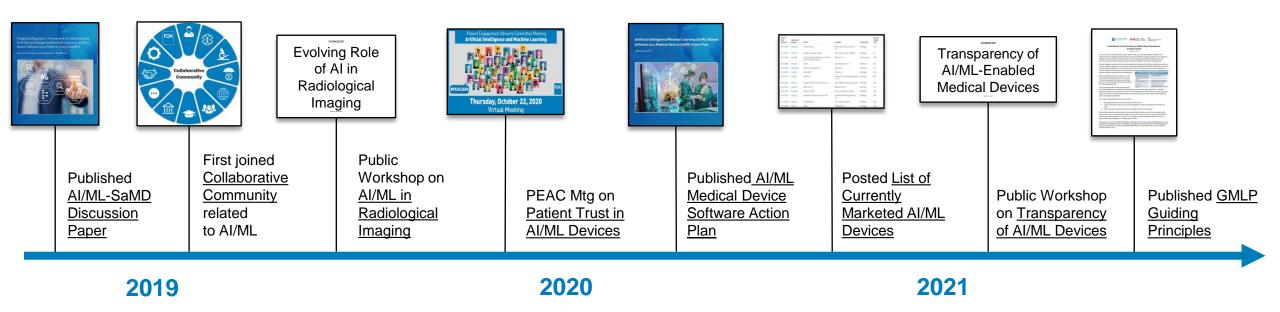
CDER AI FDA's <u>CDER</u> has seen a rapid increase in drug regulatory submissions with AI/ML components

Regulatory submissions with key terms ML or AI by Therapeutic Area


Q i Liu, R. H., Julie Hsieh, Hao Zhu, Mo Tiwari, Guansheng Liu, Daphney Jean, M. Khair ElZarrad, Tala Fakhouri, Steven Berman, Billy Dunn, Matthew Diamond, and Shiew-Mei Huang (2022). Landscape Analysis of the Application of Artificial Intelligence and Machine Learning in Regulatory Submissions for Drug Development from 2016 to 2021. Clinical Pharmacology & Therapeutics. (Accepted May 2022)

CDER AI AI in drug development – challenges

- Al or ML approach can only ever be as good as the underlying data:
 - Scarcity of high-quality, large-scale, and fit-for-purpose datasets for development and testing
 - $_{\odot}$ Identification and mitigation of bias in datasets
 - $_{\odot}$ poor generalization due to dataset shift, to overfitting to confounders
- Black box algorithms
- Ensuring transparency to users
- Providing oversight/governance for adaptive algorithm
- Need for regulatory clarity in certain areas


FD/

Advancing regulatory science in this space can help us promote innovation and public health

CDER AI

CDER AI FDA's efforts in this area? **Center for Devices and Radiological Health (CDRH)**

CDER AI CDRH's Good Machine Learning Practice for Medical Device Development: Guiding Principles

Multi-Disciplinary Expertise Is Leveraged	Model Design Is Tailored to the Available Data			
Throughout the Total Product Life Cycle	and Reflects the Intended Use of the Device			
Good Software Engineering and Security	Focus Is Placed on the Performance of the			
Practices Are Implemented	Human-AI Team			
Clinical Study Participants and Data Sets Are Representative of the Intended Patient Population	Testing Demonstrates Device Performance During Clinically Relevant Conditions			
Training Data Sets Are Independent of Test Sets	Users Are Provided Clear, Essential Information			
Selected Reference Datasets Are Based Upon	Deployed Models Are Monitored for Performance			
Best Available Methods	and Re-training Risks Are Managed			

CDER AI

FDA's efforts in this area? Center for Drug Evaluation and Research (CDER)

- CDER actively collaborates with CDRH, CBER, and other centers on issues related to AI/ML in medical product development to ensure consistency whenever possible
- CDER established an AI Steering Committee in 2020 to facilitate effective use and sustainment of AI in CDER's decision-making and operations
- Next steps: workshops, white papers, discussion paper, harmonizing and tailoring GMLP to drug development, support development of regulatory science methods
- Our goal: to develop and adopt a flexible risk-based regulatory framework that promotes innovation and protects patient safety

Thank you