Pharmacokinetics and Dose Optimization of Anticoagulants in Children with Obesity

A Focus on Enoxaparin

09 November 2022

Dr. Jackie Gerhart, PhD, MBA, MS*

University of North Carolina at Chapel Hill Eshelman School of Pharmacy *Current affiliation: GPD, Pfizer jacqueline.gerhart@pfizer.com

EVALUATE: ESHELMAN SCHOOL OF PHARMACY

Disclosures and funding

- I am an employee and stockholder of Pfizer.
- UNC funding:
 - 1R01HD096435
 - 5T32GM122741
 - American Foundation for Pharmaceutical Education (AFPE) Fellowship

- Understand why precise anticoagulant dosing is important
- Hypothesize how anticoagulant dosing may differ in patients with obesity
- Review current literature of anticoagulant dosing in children with obesity
- Focus on enoxaparin:
 - How to use real world data and modeling and simulation to better understand enoxaparin in children with obesity

Anticoagulants are a broad and varied drug class

UNC ESHELMAN SCHOOL OF PHARMACY Sabir et al. Nat Rev Cardiol. 2014.

Anticoagulants have narrow therapeutic indices, often requiring dose monitoring

UNC SHELMAN SCHOOL OF PHARMACY

ACT: activated clotting time INR: international normalized ratio PTT: partial thromboplastin time

Patients with obesity may be at risk of supratherapeutic anticoagulant exposure

Appropriate heparin dosing in adults with obesity is still debated

Studies supporting recommended dosing¹⁻⁴:

- A minority of adults with obesity received reduced dosing
- No significant difference in peak concentration
- No difference in bleeding events

ESHELMAN SCHOOL

OF PHARMACY

Studies supporting reduced dosing⁵⁻⁸:

- Many real world patients with obesity received reduced dosing
- Reduced dosing better achieved concentration in the target range
- Reduced dosing with obesity reduced bleeding events

Vitamin K Re	ductase Inhibitors	Direct Th	nrombin Inhibitors
warfarin	↓ Dosing with obesity ¹⁻²	argatroban bivalirudin	No published data
He	parins		
unfractionated heparin	↓ Dosing with obesity ³⁻⁴ No adjustment for obesity ⁵	Direct-Ac	ting Oral Anticoagulants
enoxaparin	↓ Dosing with obesity ⁶ No adjustment for obesity ⁷	apixaban edoxaban rivaroxaban	No published data
dalteparin	No adjustment for obesity ⁸	dabigatran	
fondaparinux	No published data		diatric anticoagulant do izing age, obesity statu

ESHELMAN SCHOOL

OF PHARMACY

Vitamin K Reductase Inhibitors			Direct Thrombin Inhibitors		
warfarin	↓ Dosing with obesity ¹⁻²		argatroban bivalirudin	No published data	
Не	Heparins				
unfractionated heparin	↓ Dosing with obesity ³⁻⁴ No adjustment for obesity ⁵		Direct-Ac	ting Oral Anticoagulants	
	↓ Dosing with obesity ⁶		apixaban		
enoxaparin	No adjustment for obesity ⁷		edoxaban	No published data	
			rivaroxaban		
dalteparin	No adjustment for obesity ⁸		dabigatran		
fondaparinux	No published data				

ESHELMAN SCHOOL

OF PHARMACY

Vitamin K Re	ductase Inhibitors	Direc	t Thrombin Inhibitors
warfarin	↓ Dosing with obesity ¹⁻²	argatroban bivalirudin	No published dat
He	parins		
nfractionated heparin	↓ Dosing with obesity ³⁻⁴ No adjustment for obesity ⁵	Direct	-Acting Oral Anticoagulant
enoxaparin	↓ Dosing with obesity ⁶ No adjustment for obesity ⁷	apixaban edoxaban rivaroxaban	No published dat
dalteparin	No adjustment for obesity ⁸	dabigatran	
fondaparinux	No published data		

ESHELMAN SCHOOL

OF PHARMACY

Children with obesity may have altered warfarin exposure

Methods: Retrospective chart review children 1-12 years old (n = 184)

Category	Odds for elevated INR value	P-value
Obesity	0.24 (0.06-0.86)	< 0.05
	Odds ratio (95% confidence interval)	

Methods: Retrospective chart review of children 2-18 years old

Characteristic	With Obesity (n = 10)	Without Obesity (n = 20)	P-value
Initial warfarin dose (mg/kg)	0.06 ± 0.02	0.11 ± 0.04	< 0.01
Maximum warfarin dose (mg/kg)	0.09 ± 0.04	0.13 ± 0.05	0.04
Supratherapeutic INR value	1 (10%)	14 (70%)	0.09
Time to therapeutic INR (days)	6 (4-28)	3 (1-10)	< 0.01

Values presented as mean ± standard deviation, n (%), or median (range).

VC ESHELMAN SCHOOL INR: international normalized ratio OF PHARMACY Moffett et al. Pediatr Blood Cancer. 2012. Moffett et al. J Pediatr Hematol Oncol. 2014. Advancing medicine for life 11

Vitamin K Reductase Inhibitors			
warfarin	↓ Dosing with obesity ¹⁻²		
He	eparins		
unfractionated heparin	↓ Dosing with obesity ³⁻⁴ No adjustment for obesity ⁵		
enoxaparin	↓ Dosing with obesity ⁶ No adjustment for obesity ⁷		
dalteparin	No adjustment for obesity ⁸		
fondaparinux	No published data		

ESHELMAN SCHOOL

OF PHARMACY

Direct Thrombin Inhibitors

argatroban

bivalirudin

No published data

Direct-Acting Oral Anticoagulants

apixaban edoxaban rivaroxaban dabigatran

No published data

Children with obesity receiving heparin exhibit supratherapeutic anti-Xa levels

Methods: Retrospective BMI-based sub-analysis of children 2-19 years old

Characteristic	With Obesity (n = 22)	Without Obesity (n = 34)	P-value
Time to therapeutic anti-Xa (h)	4 (2-17)	12 (4-96)	0.02
First anti-Xa (IU/mL)	0.61 (0.09-2.23)	0.24 (0.09-1.02)	0.01
Supratherapeutic first anti-Xa level	10 (45.5%)	3 (8.8%)	< 0.01
Any supratherapeutic anti-Xa level	17 (77.3%)	12 (35.3%)	< 0.01
Major bleed	1 (4.5%)	1 (2.9%)	0.99
Initial aPTT	101 (40-250)	67 (34-250)	0.07
Supratherapeutic first aPTT	11 (57.9%)	6 (18.8%)	< 0.01
Any supratherapeutic aPTT	16 (84.2%)	21 (65.6%)	0.15

Note: Data are presented as n (%) or median (range). P-values result from chi-square, Fisher's exact, or Wilcoxon rank sum test.

aPTT: activated partial thromboplastin time BMI: body mass index IU: international units Kuhn et al. Pediatr Blood Cancer. 2021.

Vitamin K Re	ductase Inhibitors	Direct Th	nrombin Inhibitors
warfarin	↓ Dosing with obesity ¹⁻²	argatroban bivalirudin	No published data
Не	parins		
unfractionated heparin	Dosing with obesity ³⁻⁴ No adjustment for obesity ⁵	Direct-Ac	ting Oral Anticoagulants
enoxaparin	↓ Dosing with obesity ⁶ No adjustment for obesity ⁷	apixaban edoxaban rivaroxaban	No published data
dalteparin	No adjustment for obesity ⁸	dabigatran	
fondaparinux	No published data		

ESHELMAN SCHOOL

OF PHARMACY

Appropriate enoxaparin dosing in children with obesity is unclear

Reduced dosing of enoxaparin for venous thromboembolism in overweight and obese adolescents: a single institution retrospective review

Stephanie Hoffman MD¹ | Chi Braunreiter MD^{2,3}

- 12-18 year-olds (n = 30) with obesity and overweight
- Compared reduced (< 0.9 mg/kg) versus recommended dosing
- Both regimens achieved equivalent concentrations
- No adverse outcomes

Comparison of Anti-Xa Levels in Obese and Non-Obese Pediatric Patients Receiving Treatment Doses of Enoxaparin

Ashley A. Richard, PharmD¹, Shelly Kim, PharmD¹, Brady S. Moffett, PharmD, MPH¹, Lisa Bomgaars, MD², Donald Mahoney, Jr., MD², and Donald L. Yee, MD²

- 2-18 year-olds (n = 60) with and without obesity
- Mean therapeutic dose was 26% lower with obesity
- Concentrations were 21% higher with obesity
- Minimal bleeding for either group

15

Appropriate enoxaparin dosing in children with obesity is unclear

Use of Real-World Data and Physiologically-Based Pharmacokinetic Modeling to Characterize Enoxaparin Disposition in Children With Obesity

Jacqueline G. Gerhart¹^(D), Fernando O. Carreño¹^(D), Matthew Shane Loop¹^(D), Craig R. Lee¹^(D), Andrea N. Edginton²^(D), Jaydeep Sinha^{1,3}^(D), Karan R. Kumar^{4,5}^(D), Carl M. Kirkpatrick⁶^(D), Christoph P. Hornik^{4,5}^(D) and Daniel Gonzalez^{1,*}^(D) on behalf of the Best Pharmaceuticals for Children Act – Pediatric Trials Network Steering Committee[†]

ESHELMAN SCHOOL

OF PHARMACY

OBJECTIVE:

Use **real world data** to characterize differences in **enoxaparin** disposition in children with and without **obesity**.

Gerhart et al. Clin Pharmacol Ther. 2022.

OBJECTIVE: Use real world data to characterize differences in enoxaparin disposition

Prepare **real world dataset** for analysis.

- Data cleaning and formatting
- Data quality control checks

OF PHARMACY

Use real world data to develop a **PBPK model** to better understand mechanistic drivers of enoxaparin concentration

- Developed in adults
- Scaled to children

Use the PBPK model to do dosing simulations in order to optimize dosing in children with obesity.

- Evaluate recommended dosing
- Explore body size metrics

3

✓ Extensive dataset of real world patients

2

✓ Mechanistic characterization of exposure differences

ESHELMAN SCHOOL PBPK: physiologically-based pharmacokinetic

Gerhart et al. Clin Pharmacol Ther. 2022.

Observed concentrations came from pediatric electronic health record data

Inclusion criteria

- Children 2 17 years old
- Receiving enoxaparin for treatment or prophylaxis

Exclusion criteria

- Renal dysfunction (eGFR < 30 mL/min or 90 mL/min/1.73m² or CrCl < 75 mL/min/1.73m²)
- Serum creatinine > 4 mg/dL
- Elevated bilirubin levels (≥ 6 mg/dL)
- On hemodialysis, ECMO, VAD, or dialysis
- Pregnancy
- Neoplasms
- No height or anti-Xa concentration reported

UNC ESHELMAN SCHOOL OF PHARMACY

CrCl: creatinine clearance
 ECMO: extracorporeal membrane oxygenation
 eGFR: estimated glomerular filtration rate
 VAD: ventricular assist device

Gerhart et al. *Clin Pharmacol Ther.* 2022. https://pediatrictrials.org/ptn-creates-data-repositoryto-aid-in-pediatric-research

Model

development

Dosing

simulations

Data	Ν		
Sites	9		
Subjects	596		
Hospitalizations	1,098		
Anti-Xa Samples	2,825		

Real world

dataset

Children with and without obesity have significantly higher enoxaparin concentrations

IU: international units

PBPK offers advantages for characterizing drug disposition in children with obesity

ESHELMAN SCHOOL PBPK: physiologically-based pharmacokinetic

OF PHARMACY

Barrett et al. *Clin Pharmacol Ther*. 2012. Gerhart et al. *Front Pharmacol*. 2022.

Key enoxaparin PBPK model parameters

PBPK modeling captures observed concentrations from children without and with obesity

AFE: average fold error

PI: prediction interval

PBPK: physiologically-based pharmacokinetic

ESHELMAN SCHOOL

OF PHARMACY

	Children without Obesity	Children with Obesity
AFE	0.87	0.82
Within 90% PI (%)	75.2%	77.2%
Above 90% PI (%)	20.6%	20.5%
Below 90% PI (%)	4.2%	4.1%
	1 Real world dataset	2 Model development 3 Dosin simulati

Gerhart et al. Clin Pharmacol Ther. 2022.

PBPK model-estimated changes in enoxaparin disposition with obesity

ESHELMAN SCHOOL OF PHARMACY OF PHARMACY OF PHARMACY OF PHARMACY Gerhart et al. Clin Pharmacol Ther. 2022.

Optimizing recommended weight-based enoxaparin dosing

Recommended Dosing

- Treatment: 1 mg/kg BID
- Prophylaxis: 0.5 mg/kg BID

Body Size Metrics

- Total bodyweight (currently recommended)
- Fat-free mass (FFM) ٠

$$FFM (males) = \left[0.88 + \left(\frac{0.12}{\left[1 + \left(\frac{age}{13.4} \right)^{-12.7} \right]} \right) \right] * \left[\frac{(9270 * weight)}{6680 + (216 * BMI)} \right]$$
$$FFM (females) = \left[1.11 + \left(\frac{-0.11}{\left[1 + \left(\frac{age}{7.1} \right)^{-1.1} \right]} \right) \right] * \left[\frac{(9270 * weight)}{8780 + (244 * BMI)} \right]$$

Goal: Match exposure between children with and without obesity.

BID: twice daily **ESHELMAN SCHOOL OF PHARMACY**

BMI: body mass index FFM: fat-free mass

Gerhart et al. Clin Pharmacol Ther. 2022. Al-Sallami et al. Clin Pharmacokinet. 2015.

Weight-based dosing results in differences in enoxaparin concentration with obesity and age

iU: International units **ESHELMAN SCHOOL OF PHARMACY**

Gerhart et al. Clin Pharmacol Ther. 2022.

Fat-free mass dosing equalizes enoxaparin concentration with obesity and age

Future directions: Anticoagulant pharmacodynamics

- Pediatric anticoagulant trials
 - Direct thrombin inhibitors, DOACs
- Dose-response relationship
 - Adults versus pediatric patient populations
- **Obesity-induced** changes in the coagulation cascade

Conclusions: Results to-date highlight the importance of childhood obesity in anticoagulant dosing

- Most anticoagulant pediatric obesity data published are for warfarin, heparin, or enoxaparin.
- Taken together, these studies generally suggest that children with obesity might receive **lower** anticoagulant doses, are **more likely** to have a supratherapeutic concentrations, and **take longer** to achieve therapeutic concentrations relative to children without obesity.
- **Dose monitoring** of anticoagulants can allow for dose adjustments with obesity.
- Children with obesity have statistically significantly higher enoxaparin concentrations. Fat-free mass dosing leads to more comparable 4-hour enoxaparin exposure.
- Age and obesity status should be considered in enoxaparin dose selection for children.

Acknowledgements

- Jaydeep Sinha, PhD
- Fernando Carreño, PhD
- Matthew Loop, PhD
- Carl Kirkpatrick, PhD
- Ben Urick, PharmD, PhD
- PTN Data Repository
 - Christoph Hornik, MD, PhD, MPH
 - Karan Kumar, MD, MS

- UNC Gonzalez Lab members
- Project advisors
 - Danny Gonzalez, PharmD, PhD
 - Craig Lee, PharmD, PhD
 - Andrea Edginton, PhD
 - Bob Dupuis, PharmD
 - Jian Wang, PhD
- Funding:
 - 1R01HD096435; 5T32GM122741, AFPE fellowship

UNC ESHELMAN SCHOOL OF PHARMACY

AFPE: American Foundation for Pharmaceutical Education PTN: Pediatric Trials Network UNC: University of North Carolina at Chapel Hill

Pharmacokinetics and Dose Optimization of Anticoagulants in Children with Obesity

A Focus on Enoxaparin

09 November 2022

Dr. Jackie Gerhart, PhD, MBA, MS*

University of North Carolina at Chapel Hill Eshelman School of Pharmacy *Current affiliation: GPD, Pfizer jacqueline.gerhart@pfizer.com

ESHELMAN SCHOOL

- 1. Hosch LM et al. Evaluation of an unfractionated heparin pharmacy dosing protocol for the treatment of venous thromboembolism in nonobese, obese, and severely obese patients. *Ann Pharmacother.* 2017; 51(9):768-73.
- 2. Spinler SA et al. Safety and efficacy of unfractionated heparin versus enoxaparin in patients who are obese and patients with severe renal impairment: Analysis from the ESSENCE and TIMI 11B studies. *Am Heart J.* 2003; 146(1):33-41.
- He Z et al. Review of current evidence available for guiding optimal enoxaparin prophylactic dosing strategies in obese patients

 Actual weight-based vs fixed. 2017; 113:191-4.
- 4. Smith J, Canton EM. Weight-based administration of dalteparin in obese patients. Am J Health Syst Pharm. 2003; 60(7):683-7.
- 5. Riney JN et al. Identifying optimal initial infusion rates for unfractionated heparin in morbidly obese patients. *Ann Pharmacother.* 2010; 44(7-8):1141-51.
- 6. Spinler SA et al. Weight-based dosing of enoxaparin in obese patients with non-ST-segment elevation acute coronary syndromes: Results from the CRUSADE initiative. *Pharmacotherapy.* 2009; 29(6)631-8.
- 7. Gaborit B et al. Lean body weight is the best scale for venous thromboprophylaxis algorithm in severely obese patients undergoing bariatric surgery. *Pharmacol Res.* 2018; 131:211-7.
- 8. Martinez L et al. Effect of fondaparinux prophylaxis on anti-factor Xa concentrations in patients with morbid obesity. *Am J Health Syst Pharm.* 2011; 68(18):1716-22.

ESHELMAN SCHOOL

- 1. Moffett BS et al. Risk factors for elevated INR values during warfarin therapy in hospitalized pediatric patients. *Pediatr Blood Cancer.* 2012; 58(6):941-4.
- 2. Moffett BS, Bomgaars LR. Response to warfarin therapy in obese pediatric patients dosed according to institutional guidelines. *J Pediatr Hematol Oncol.* 2014; 36(8):e487-9.
- 3. Kuhn AK et al. Unfractionated heparin using actual body weight without dose capping in obese pediatric patients-Subgroup analysis from an observational cohort study. *Pediatr Blood Cancer.* 2021; 68(3):e28872.
- 4. Taylor BN et al. Evaluation of weigh-based dosing of unfractionated heparin obese children. *J Pediatr.* 2013; 163(1):150-3.
- 5. Moffett BS et al. Herparin dosing in obese pediatric patients in the cardiac catheterization laboratory. *Ann Pharmacother*. 2011; 45(7-8):876-80.
- 6. Hoffman S, Braunreiter C. Reduced dosing of enoxaparin for venous thromboembolism in overweight and obese adolescents: A single institution retrospective review. *Res Pract Thromb Haemost.* 2017; 1(2):188-93.
- 7. Richard AA et al. Comparison of anti-Xa levels in obese and non-obese pediatric patients receiving treatment doses of enoxaparin. *J Pediatr.* 2013; 162(2):293-6.
- 8. Warad D et al. A retrospective analysis of outcomes of dalteparin use in pediatric patients: A single institution experience. *Thromb Res.* 2015; 136(2):229-33.

Obesity and weight may impact appropriate anticoagulant dosing in adults

Vitamin K Reductase Inhibitors		Direct Thrombin Inhibitors		
warfarin	↑ absolute dose with obesity ¹⁻⁴	argatroban	Use recommended weight-based dose ²⁶⁻²⁷	
	Heparins	bivalirudin	Use recommended weight-based dose ²⁸	
unfractionated heparin	↓ weight-based dose with obesity ⁵⁻⁶ Use recommended weight-based dose ⁷⁻⁸		Direct-Acting Oral Anticoagulants	
enoxaparin	↓ weight-based dose with obesity ⁹⁻¹⁴ Use recommended weight-based dose ¹⁵⁻¹⁹	apixaban	Use recommended absolute dose ²⁹⁻³¹	
	↓ absolute dose with obesity ²⁰	edoxaban	No published data	
dalteparin	Use weight-based dose with obesity ²¹⁻²³ Use ideal weight-based dose with obesity ²⁴	rivaroxaban	Use recommended absolute dose ³¹⁻³³	
fondaparinux	↓ weight-based dose with obesity ²⁵	dabigatran	No published data	

ESHELMAN SCHOOL

OF PHARMACY

ESHELMAN SCHOOL

- 1. Alshammari A et al. Warfarin dosing requirement according to body mass index. Cureus. 2020; 12(1):e11047.
- 2. Soyombo BM et al. Impact of body mass index on 90-day warfarin requirements: A retrospective chart review. *Ther Adv Cardiovasc Dis.* 2021; 15:17539447211012803.
- 3. Wallace JL et al. Comparison of initial warfarin response in obese patients versus non-obese patients. *J Thromb Thrombolysis*. 2013; 36(1):96-101.
- 4. Mueller JA et al. Warfarin dosing and body mass index. Ann Pharmacother. 2014; 48(%):584-8.
- 5. Riney JN et al. Identifying optimal initial infusion rates for unfractionated heparin in morbidly obese patients. *Ann Pharmacother.* 2010; 44(7-8):1141-51.
- 6. Spruill WJ et al. Achievement of anticoagulation by sing a weight-based heparin dosing protocol for obese and nonobese patients. *Am J Health Syst Pharm.* 2001; 58(22):2143-6.
- 7. Hosch LM et al. Evaluation of an unfractionated heparin pharmacy dosing protocol for the treatment of venous thromboembolism in nonobese, obese, and severely obese patients. *Ann Pharmacother.* 2017; 51(9):768-73.
- 8. Joy M et al. Safety and efficacy of high-dose unfractionated heparin for prevention of venous thromboembolism in overweight and obese patients. *Pharmacotherapy.* 2016; 36(7):740-8.
- 9. Spinler SA et al. Safety and efficacy of unfractionated heparin versus enoxaparin in patients who are obese and patients with severe renal impairment: Analysis from the ESSENCE and TIMI 11B studies. *Am Heart J.* 2003; 146(1):33-41.

ESHELMAN SCHOOL

- 10. He Z et al. Review of current evidence available for guiding optimal enoxaparin prophylactic dosing strategies in obese patients Actual weight-based vs fixed. 2017; 113:191-4.
- 11. Mahaffey KW et al. Obesity in patients with non-ST-segment elevation acute coronary syndromes: Results from the SYNERGY trial. *Int J Cardiol.* 2010; 139(2):123-33.
- 12. Sanderink GJ et al. The pharmacokinetics and pharmacodynamics of enoxaparin in obese volunteers. *Clin Pharmacol Ther.* 2002; 72(3):308-18.
- 13. Barba R et al. The influence of extreme body weight on clinical outcome of patients with venous thromboembolism: Findings from a prospective registry (RIETE). *J Thromb Haemost.* 2005; 3(5):856-62.
- 14. Czupryn MJ et al. Dosing of enoxaparin in morbidly obese patients: A retrospective cohort. *Hosp Pharm.* 2018; 53(5):331-7.
- 15. Spinler SA et al. Weight-based dosing of enoxaparin in obese patients with non-ST-segment elevation acute coronary syndromes: Results from the CRUSADE initiatve. *Pharmacotherapy.* 2009; 29(6)631-8.
- Lalama JT et al. Assessing an enoxaparin dosing protocol in morbidly obese patients. J Thromb Thrombolysis. 2015; 39(4):516-21.
- 17. Deal EN et al. Evaluation of therapeutic anticoagulation with enoxaparin and associated anti-Xa monitoring in patients with mobid obesity: A case series. *J Thromb Thrombolysis.* 2011; 32(3):188-94.

ESHELMAN SCHOOL

- (3/4)
- 18. Thompson-Moore NR et al. Evaluation and pharmacokinetics of treatment dose enoxaparin in hospitalized patients with morbid obesity. *Clin Appl Thromb Hemost.* 2015; 21(6)513-20.
- Green B, Duffull SB. Development of a dosing strategy for enoxaparin in obese patients. Br J Clin Pharmacol. 2003; 56(1):96-103.
- 20. Simoneau MD et al. Effect of prophylactic dalteparin on anti-factor Xa levels in morbidly obese patients after bariatric surgery. *Obes Surg.* 2010; 20(4):487-91.
- 21. Al-Yaseen E et al. The safety of dosing dalteparin based on actual body weight for the treatment of acute venous thromboembolism in obese patients. *J Thromb Haemost*. 2005; 3(1):100-2.
- 22. Yee JY et al. The effect of body weight on dalteparin pharmacokinetics: A preliminary study. *Eur J Clin Pharmcol.* 2000; 56(4):293-7.
- 23. Smith J, Canton EM. Weight-based administration of dalteparin in obese patients. Am J Health Syst Pharm. 2003; 60(7):683-7.
- 24. Gaborit B et al. Lean body weight is the best scale for venous thromboprophylaxis algorithm in severely obese patients undergoing bariatric surgery. *Pharmacol Res.* 2018; 131:211-7.
- 25. Martinez L et al. Effect of fondaparinux prophylaxis on anti-factor Xa concentrations in patients with morbid obesity. *Am J Health Syst Pharm.* 2011; 68(18):1716-22.

- 26. Rice L et al. Argatroban anticoagulation in obese versus nonobese patients: Implications for treating heparin-induced thrombocytopenia. J Clin Pharmacol. 2007; 47(8):1028-34.
- 27. Elagizi S, Davis K. Argatroban dosing in obesity. *Thromb Res.* 2018; 163:60-63.
- 28. Tsu LV, Dager WE. Comparison of bivalirudin dosing strategies using total, adjusted, and ideal body weights in obese patients with heparin-induced thrombocytopenia. *Pharmcotherapy.* 2012; 32(1):20-6.
- 29. Upreti VV et al. Effect of extremes of body weight on the pharmacokinetics, pharmacodynamics, safety and tolerability of apixaban in healthy subjects. Br J Clin Pharmacol. 2013; 76(6):908-16.
- 30. Cohen AT et al. Efficacy, safety, and exposure of apixaban on patients with high body weight or obesity and venous thromboembolism: Insights from AMPLIFY. Adv Ther. 2021; 38(6):3003-18.
- 31. Ballerie A et al. Apixaban and rivaroxaban in obese patients treated for venous thromboembolism: Drug levels and clinical outcomes. Thromb Res. 2021; 208:39-44.
- 32. Barsam SJ et al. The impact of body weight on rivaroxaban pharmacokinetics. Res Pract Thromb Haemost. 2017; 1(2):180-7.
- 33. Speed V et al. Fixed dose rivaroxaban can be used in extremes of bodyweight: A population pharmacokinetic analysis. J *Thromb Haemost.* 2020; 18(9):2296-307.

Scaling the adult PBPK to children

PBPK model-estimated changes in enoxaparin disposition with obesity

ESHELMAN SCHOOL OF PHARMACY

CL: clearance PBPK: physiologically-based pharmacokinetic V_d: volume of distribution

Gerhart et al. Clin Pharmacol Ther. 2022.