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Y Al=Trustworthy

News > Medscape Medical News

Al Bot ChatGPT Passes US
Medical Licensing Exams Without
Cramming — Unlike Students

Alicia Ault
January 26, 2023
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ChatGPT can pass parts of the US medical
licensing exam, researchers have found, raising
questions about whether the Al chatbot could
one day help write the exam or help students
prepare for it.

Source: http://medscape.com/viewarticle/287549
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How many letters in FIVE?

FIVE has 5 letters.

Are you sure?

Yes, I'm sure. FIVE has 5 letters.

Can you spell it out?

Sure, F-I-V-E spells "FIVE".

ok, so how many letter?

FIVE has 5 letters.

Reproduced from example viewed on Twitter, unable to find
original attribution, please email me if you have info:
luca@sagebionetwors.org
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Fig. 4. Characteristics of trustworthy Al systems. Valid & Reliable is a necessary condition of
trustworthiness and is shown as the base for other trustworthiness characteristics. Accountable &
Transparent is shown as a vertical box because it relates to all other characteristics.
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7 Valid — Reproducible

Systematic evaluation of
300+ papers in:

e Computer vision
e Natural language processing
e General Machine Learning (ML)

e Machine learning for health (ML4H)

Reproducibility in machine learning for health research: Still a ways to go. McDermott et al., SCIENCE
TRANSLATIONAL MEDICINE 2021

https://arxiv.org/abs/1907.01463
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%ﬁ Reliable — Not Brittle

Original tracing
Prediction: AF
100% confidence

+
Smooth Perturbation

v

Combined tracing
Prediction: Normal
100% confidence

Deep learning models for electrocardiograms are susceptible to adversarial attack

Synthesizing robust adversarial examples Athalye, et al., (ICML) 2018
h¥tgs:/_zarxi\§org[abs(1 707.07397 ? f ) Han et al., NATURE MEDICINE 2020 https://arxiv.org/abs/1707.07397

SEE ALSO: Adversarial attacks on medical machine learning, Finlayson et al., SCIENCE (2019)




7 Unknown Bias — Lack of Reproducibility
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Machine Learning COVIDO19 Detection from Wearables: The importance of study design. Nestor et al. (Accepted)
Preprint of prior version available: https://www.medrxiv.org/content/10.1101/2021.05.11.21257052v1
SEE ALSO: The performance of wearable sensors in the detection of SARS-CoV-2 infection: a systematic review, Mitratza & Goodale et al. LANCET DIGITAL HEALTH
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%% Unmitigated Bias — Unfairness

Asian —e—
Black ]
i =] May 31, 2022
:thht s Rt Racial and Ethnic Discrepancy in Pulse Oximetry and
Delayed Identification of Treatment Eligibility Among

N e i Patients With COVID-19

Zero-one loss
Ashraf Fawzy, MD, MPH'; Tianshi David Wu, MD, MHS23; Kunbo Wang, MS4; et al

Classifier trained on existing data can exhibit unequal error rates

across races » Author Affiliations | Article Information

Why Is My Classifier Discriminatory? Chen et al., (NeurIPS) 2018 JAMA Intern Med. 2022;182(7):730-738. doi:10.1001/jamainternmed.2022.1906

https://arxiv.org/abs/1805.12002

Dissecting racial bias in an algorithm used to manage
the health of populations

ZIAD OBERMEYER ([5) , BRIAN POWERS, CHRISTINE VOGELI, AND SENDHIL MULLAINATHAN ([ Authors Info & Affiliations

SCIENCE - 250ct2019 - Vol 366, Issue 6464 - pp.447-453 - DOI: 10.1126/science.aax2342



7 Lack of Representation — Unmitigable Bias

L

Percentages of 518 FDA-approved Al products that submitted data covering sources of bias

Aggregate Reporting Stratified Reporting
Patient less than 2% conducted less than 1% approval with performance
Cohort multi-rage/gender validation figures across gender and race
Medical 8% conducted less than 2% reported performance
Device multi-manufacturer validation  figures across manufacturers

s ; less than 2% conducted less than 1% approvals with performance

Clinical site o St ;

multiside validation figures across sites

less than 2% reported less than 1% reported annotator/reader
Annotator

annotator/reader profile profile

Bias in medical Al products often runs under FDA's radar, Hosgor & Akin STAT+
https://www.statnews.com/2023/01/09/four-types-bias-medical-ai-running-under-fda-radar/




7 New sources of Bias

Step 1

Collect demonstration data
and train a supervised policy.
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Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is W
sampled from Wiiteastory
the dataset. abautotters.

The PPO model is i

. 9
initialized from the .’(:.;*.
supervised policy. =Y
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Onee upon atime...
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to update the r
policy using PPO. k

Source: https://openai.com/blog/chatgpt/
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Fig. 4. Characteristics of trustworthy Al systems. Valid & Reliable is a necessary condition of
trustworthiness and is shown as the base for other trustworthiness characteristics. Accountable &
Transparent is shown as a vertical box because it relates to all other characteristics.
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Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Extracting Training Data from Large Language Models, Carlini et al.
https://arxiv.org/abs/2012.07805
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Figure 1: Our extraction attack. Given query access to a

neugal network la'nguage model, we extract an individual per- Sample AP response for daily step counts. Source:
son’s name, email address, phone number, fax number, and https://devfitbit.com/build/reference/web-api/activity/
physical address. The example in this figure shows informa-

tion that is all accurate so we redact it to protect privacy.

Extracting Training Data from Large Language Models, Carlini et al.
https://arxiv.org/abs/2012.07805




5@55 Assess risk, then choose tradeoffs
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Trust — Verifiable (formally & automatically)

Proof of human-centric design

Standardized data description (e.g., Datasheet for Datasets)
Gebru & Krawford et al. 2018

Standardized model descriptions (e.g., Model Cards)
Mitchell & Gebru et al. 2018

Open benchmarks (e.g., DREAM Challenges)

https.//dreamchallenges.org/

Standardized reporting metrics
Open interoperable protocols

Application
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Task &
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Application People &
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Al Model Al Model

Key
Dimensions

Lifecycle

Stage




Thank You

Luca Foschini, PhD
Sgﬁoﬁ SageBionetvvorkS luca@sagebionetworks.org

® @calimagna


mailto:luca@sagebionetworks.org

