

Precision Medicine 2030

FDA-MCERSI Workshop on Application of Artificial Intelligence and Machine Learning for Precision Medicine

> Mike Pacanowski Division of Translational and Precision Medicine Office of Clinical Pharmacology Center for Drug Evaluation and Research U.S. Food and Drug Administration

This presentation reflects the views of the speaker and should not be construed to represent FDA's policies

Agenda

Where can AI methodologies be applied to support targeted drug development and precision patient care?

- Landscape
- Opportunities
- Challenges

A Brief History of Medicines

"Precision Medicine"

An innovative approach to tailoring disease prevention and treatment that takes into account differences in people's genes, environments, and lifestyles¹

- <u>Targeted therapies</u>: Drugs or biologics intended for use with a genomic, proteomic, or other biomarker/tool that
 - Identifies patients who are eligible for treatment
 - Aids in determining the appropriate dosage
 - Allows for monitoring of response to individualize therapy²

1 <u>Precision Medicine | FDA</u>: https://www.fda.gov/medical-devices/in-vitro-diagnostics/precision-medicine 2 Unofficial definition

What Can Biomarkers Tell Us?

Susceptibility

Will I develop the disease? BRCA→breast cancer

Safety

Am I having an adverse event? ALT \rightarrow Hepatotoxicity

Monitoring

Has the condition changed? HIV RNA \rightarrow HIV/AIDS

Response

Did treatment work? INR→warfarin/stroke Diagnosis

Do I have the disease? $CFTR \rightarrow CF$

> Prognosis Will I live longer? 17p del→CLL

Prediction Will I respond to treatment? BRAF→skin cancer

Evolution of Precision Medicines

Pathways to Integrate Technology into Drug Development and Practice

<u>Note</u>: These pathways do not exist in isolation and many times parallel efforts are underway within or between pathways. All share common core concepts, are datadriven, and involve regulatory assessment and outcomes based on the available data.

FDA Drug Development Tools Website

Facilitating Biomarker Development: Strategies for Scientific Communication, Pathway Prioritization, Data-Sharing, and Stakeholder Collaboration; Published June 2016, Duke-Margolis Center for Health Policy

Medical Products and Biomarkers

Selected CDER Drug Approvals in 2022 (of 37 new molecular entities)

Drug	Disease or Condition	Biomarker	Use
Tebentafusp-tebn	Uveal melanoma	HLA-A*02:01 ⁺	Selection (subset)
Lutetium Lu 177 vipivotide tetraxetan	Prostate cancer	Prostate-specific membrane antigen	Selection (subset)
Futibatinib	Cholangiocarcinoma	FGFR2 gene fusions or other rearrangements	Selection (subset)
Mirvetuximab soravtansine-gynx	Ovarian, fallopian tube, primary peritoneal cancer	Folate receptor alpha ⁺	Selection (subset)
Olutasidenib	Acute myeloid leukemia	IDH1 mutations ⁺	Selection (subset)
Adagrasib	Non-small cell lung cancer	KRAS G12C mutation ⁺	Selection (subset)
Abrocitinib	Atopic dermatitis	CYP2C19 variants	Dosage
Mitapivat	Pyruvate kinase deficiency	PKLR variants	Selection (diagnosis)
Vutrisiran	Transthyretin amyloidosis polyneuropathy	TTR variants	Selection (diagnosis)
Olipudase alfa-rpcp	Acid sphingomyelinase deficiency	SMPD1 variants	Selection (diagnosis)

The table includes 1) new molecular entities (NMEs), and selected supplements to previously approved drugs, for which the indication is restricted to a subset of patients with the disease/condition, and 2) NMEs for non-oncologic genetic diseases that mechanistically target the underlying pathophysiology + Companion diagnostic

Trends in Targeted Drug Development

FDA Novel Drug Approvals

*Targeted drugs for the purpose of this figure are new molecular entities (NMEs) for which the initially approved indication is restricted to a subset of patients who are identified through molecular testing (and excludes genotype-based dosing and infectious disease subsets).

OPPORTUNITIES AND CHALLENGES

Clinical Pharmacology Fundamentals

Drug Development and Regulation: Progressive Reduction of Uncertainty

FDA

Resolving Variability in Drug Response

Therapeutic Index

Pathobiology

16

Mechanism of Action

Variability

Heterogeneity

FDA

Advancing Precision Medicine Through AI

Data sources

- Clinical trials
- Observational studies
- Health records
- Claims

Sampling

• Fluids

- Cells
- Tissues
- Sounds
- Air
- Images
- Video
- Audio
- Pressures
- Electrical signals
- Outcomes

Measures

- Anthropometrics
- Protein expression
- Gene variants
- Movements
- Colors
- Voltages
- Symptoms

Impact

- Novel drug targets
- Risk assessment
- Diagnostic criteria
- Prognosis
- Dose selection
- Response prediction
- Monitoring
- Clinical decision support

Multidimensional Profiling Lung Adenocarcinoma

Drug	NSCLC Molecular Subgroup		
Mobocertinib	EGFR exon 20 insertion mutations		
Sotorasib	KRAS G12C mutation		
Amivantamab-vmjw	EGFR exon 20 insertion mutations		
Lorlatinib	ALK expression		
Cemiplimab-rwlc	PD-L1 high (no EGFR/ALK/ROS1)		
Tepotinib	MET exon 14 skipping alterations		
Osimertinib	EGFR exon 19 deletions, L858R, T790M		
Pralsetinib	RET fusions		
Ramucirumab	EGFR exon 19 deletions, L858R		
Erlotinib	EGFR exon 19 deletions, L858R		
Nivolumab	PD-L1 high (no EGFR/ALK)		
Ipilimumab	PD-L1 high (no EGFR/ALK)		
Brigatinib	ALK rearrangements		
Atezolizumab	PD-L1 high		
Capmatinib	MET exon 14 skipping mutations		
Selpercatinib	RET fusions		
(selected approvals)			

TCGA Research Network. Nature 2014.

FDA

Multidimensional Profiling Anticoagulant Dose Prediction

DOSAGE AND ADMINISTRATION

The appropriate initial dosing of COUMADIN varies widely for different patients. Not all factors responsible for warfarin dose variability are known, and the initial dose is influenced by: •Clinical factors including age, race, body weight, sex, concomitant medications, and comorbidities •Genetic factors (CYP2C9 and VKORC1 genotypes) [see *CLINICAL PHARMACOLOGY (12.5)*]

Select the initial dose based on the expected maintenance dose, taking into account the above factors. Modify this dose based on consideration of patient-specific clinical factors. Consider lower initial and maintenance doses for elderly and/or debilitated patients and in Asian patients [see <u>USE IN SPECIFIC POPULATIONS</u> (8.5) and <u>CLINICAL PHARMACOLOGY (12.3)</u>].

Table 1:Three Ranges of Expected Maintenance COUMADIN Daily DosesBased on CYP2C9 and VKORC1 Genotypes[†]

VKORC1	CYP2C9					
	*1/*1	*1/*2	*1/*3	*2/*2	*2/*3	*3/*3
GG	5-7 mg	5-7 mg	3-4 mg	3-4 mg	3-4 mg	0.5-2 mg
AG	5-7 mg	3-4 mg	3-4 mg	3-4 mg	0.5-2 mg	0.5-2 mg
AA	3-4 mg	3-4 mg	0.5-2 mg	0.5-2 mg	0.5-2 mg	0.5-2 mg

[†]Ranges are derived from multiple published clinical studies. VKORC1 –1639G>A (rs9923231) variant is used in this table. Other co-inherited VKORC1 variants may also be important determinants of warfarin dose.

WARFARINDOSING www.WarfarinDosing.org **Required Patient Information** Age: Sex: -Select- 🔻 Ethnicity: -Select-• Race: -Select- \mathbf{T} Warfarin Dosing Weight: lbs or kas Clinical Trial Height: feet and inches) or (cms) Liver Disease: -Select-Smokes: -Select-> Outcomes Indication: -Select-• > Hemorrhage Risk Randomize & Blind Baseline INR: Target INR: Amiodarone/Cordarone® Dose: mg/day > Patient Education Statin/HMG CoA Reductase Inhibitor: -Select-• > Contact Us Any azole (eg. Fluconazole): -Select- 🔻 Sulfamethoxazole/Septra/Bactrim/Cotrim/Sulfatrim: -Select-> References Genetic Information > Glossary VKORC1-1639/3673: Not available/pending • • CYP4F2 V433M: Not available/pending > About Us • GGCX rs11676382: Not available/pending User: • CYP2C9*2: Not available/pending Patient Version 3.0 CYP2C9*3: Not available/pending • Build : May 14, 2016 Not available/pending • CYP2C9*5: CYP2C9*6: Not available/pending • Accept Terms of Use > ESTIMATE WARFARIN DOSE

Coumadin package insert; warfarindosing.org

Where Do Al Approaches Fit?

Notes: "Discontinued" indicates that patients discontinued their last line of treatment; "On treatment" indicates that patients were still on their last line of treatment at the time of data collection.

Abbreviations: 1L: first-line; 2L: second-line; 3L: third-line; 4L: fourth-line; 5L: fifth-line; 6L: sixth-line; 7L: seventh-line; Allo-SCT: allogeneic stem cell transplant.

How Can We Advance Use of AI Approaches in Precision Medicine?*

Barriers	Lack of standardization and interoperability
	Data privacy and security
	Limited data availability and quality
	Resistance to change
	Lack of regulatory guidance
Solutions	Data integration and standardization
	Improved algorithms and models
	Collaboration and partnerships
	Clinical validation and implementation
	Investment in AI research

* According to ChatGPT

OpenAI. "ChatGPT". Welcome to ChatGPT, chat.openai.com/.

PMID: 31782136

Summary

- Precision medicine approaches rely on technologies that improve mechanistic understanding of disease and drug response
- Al and complex data analytics can augment use of existing tools to further reduce biological complexity and optimize drug development
- Al tools in practice can help resolve multiple factors to support individualized therapeutic decision making

