ScreenMCM: A Machine Learning-Based Product

Screening Tool to Accelerate Medical Countermeasure
Development
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ML is @ New Tool for the Advancement of Precision Medicine
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Jarugula et al. The Journal of Clinical Pharmacology; 2021




MCMs treat ARS and are Approved by US-FDA after Animal Testing

Product in development

*MCM — medical
countermeasure . .
e P e Tested in Animals H-\

Syndrome (ARS)

Necrosis of Bone
Marrow Cells

(Myelosuppression)

FDA Approved Product

Mortality

\ Cytopenia ﬂ )

0 https://www.fda.gov/emergency-preparedness-and-response/mcm-regulatory-science/animal-rule-information




Failure Rate

75%




ScreenMCM Accelerates Product Screening
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FDA Modernization Act 2.0: This bill authorizes the use of certain alternatives to animal testing,

including cell-based assays and computer models, to obtain an exemption from the US-FDA to

investigate the safety and effectiveness of a drug

https://www.congress.gov/bill/117th-congress/senate-bill/5002



ScreenMCM Was Built by Pooling Existing Data
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IFinal Study Report, Study14-045 Lovelace Biomedical Research Institute, Doyle-Eisele M, et al

Study Designs and Data
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*V — Vehicle
L — Leukine®

2Final Study Report, Study TSK-0144 CiToxLabs, Ascah A, et. al. 3Final Study Report Study 1017-3493, CitTox Labs, Pouliot M, et. al.

12 Biomarkers

e RBC, HGB, HCT, RETI,

e WBC, ANC, ALC, MONO,
LGUNSCE, BASO, EOS

Blood sampling times

e 1-30 days — Daily
e 31-60 days — Every 3 days

# Animals

e 501
e ~15k rows of data

3 studies — 60 days each

501 animals

12 biomarkers

Longitudinal measurements



Workflow to Predict Mortality due to ARS Using
Supervised Machine Learning

01 Data Preparation @ 03 Model Fitting

v Data from a time frame Elastic-net regression,
v’ Predictors : Raw levels and/or [ XGBoost, Support vector N
]

aggregation of time windows machines, Random forest
Outcome : 60-day mortality

|

(02 Train-test split
60% Training
40% Testing

04 Qualification

v ROC-AUC
v’ Accuracy
v’ Calibration Plot

v’ Spiegelhalter Z-test




Depletion starts — Day 4
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Recovery starts — Day 13

01 Data Preparation

95% Deaths in Days 12-24

Time Frame Selection and Data Preparation

Time window aggregation metrics
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Final dataset

500 animals x
136 predictors




Elastic-net regression algorithm performed similar to other
algorithms based on ROC-AUC & Accuracy
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E_NET: Elastic-net regression; RF — random forest; SVM CFB — change from baseline, ACFn — auto-correlation factor with lag of n days,

04 Qualification — support vector machine; XGB - XGBoost MIN — minimum, MAX - maximum




Final Elastic-net Regression Model Provides Greater than 70%
Accuracy and ROC-AUC on the Test (Unseen) Dataset

Metric Valuel 95% Cl?

ey 0.71 (0.66, 0.77)
ROC-AUC 0.75 (0.67, 0.81)
Balanced Accuracy 0.63 (0.57,0.7)
F1 Score 0.80 (0.77,0.84)
MCC? 0.31 (0.17, 0.46)
NPV 0.63 (0.51,0.77)
- 0.73 (0.7,0.78)

Value refers to test performance on the test dataset

295% Cl was obtained using 2000 bootstraps on the test dataset
3Matthew’s Correlation Coefficient

“Negative Predictive Value

>Positive Predictive Value

05 Prediction Performance



Application of ScreenMCM

Products in Hypothetical treatment Placebo survival Treatment survival
. ScreenMCM
pipeline effect on platelets rate rate

23%
Product 1 No effect \\

~N 23% | 23%
Product 2 10% K\ ne k\

Product 3 50%

Product 4< ' 100%




Conclusions

Increased probability of trial success

Shorten product development time

ScreenMCM
i
ﬂe Reduced animal testing
Bl 3

Continuous process improvement




( Individualized treatment planning for lung cancer \

Volume 25, Issue 14
15 July 2019

PRECISION MEDICINE AND IMAGING | JULY 15 2019

Machine Learning to Build and Validate a Model for Radiation
Pneumonitis Prediction in Patients with Non-Small Cell Lung
Cancer @3

Hao Yu; Huanmei Wu; Weili Wang 2 ; Shruti Jolly; Jian-Yue Jin; Chen Hu; Feng-Ming (Spring) Kong &

Inflammatory cytokines

Patient characteristics
Treatment plan

( Biomarker identification for immunotherapy \

THE LANCET

Oncology

ARTICLES | VOLUME 19, ISSUE 9, P1180-1191, SEPTEMBER 2018

A radiomics approach to assess tumour-infiltrating CD8 cells and response

to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker,
retrospective multicohort study

Roger Sun, MD * « Elaine Johanna Limkin, MD " « Maria Vakalopoulou, PhD « Laurent Dercle, MD «

Stéphane Champiat, MD « Shan Rong Han, MD « etal. Show all authors « Show footnotes

Machine Learning is Being Expanded Across Therapeutic Areas to
Achieve the Goal of Precision Medicine

Radiation toxicity
(pneumonitis)

CD8 cell penetration &
treatment response
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