

Al-Partnered Dynamical Model Discovery for Precision Medicine

FDA-MCERSI Workshop on Application of AI/ML for Precision Medicine February 17, 2023

James Lu, Distinguished Al Scientist Clinical Pharmacology, Genentech

Q: How to adapt dynamical modeling (pharmacokinetics/pharmacodynamics, disease progression, ...) **to complex high-dim data for precision medicine?**

→Leverage Al as Partner in dynamical model discovery

Expanding the Language of Dynamical Modeling

<u>Human Mind</u>

 $TS(t)=TS0\times(exp(-KS\times t)+exp(KG\times t)-1)$

....

Artificial Neural Networks

Language: Mathematical expressions

Inductive bias: Form of equations Language: Neural networks

Inductive bias: Network architecture

A Member of the Roche Group

Al as Partner in Dynamical Model Discovery

Hallmarks of *Pharmacology-Informed* Neural Network Architectures

Pharmacology Informed Neural Network

Pharmacology Concepts

- Express *causal* relationships between *dose*, *PK*, *PD*
- Leverage population data to learn the *dynamical law*
- Enable <u>"what-if"</u> simulations

Neural Networks

- Learn to obtain useful abstractions of patient data
- Learn to improve model as the amount of data increases

Interwining complementary concepts

Pharmacology-Informed: Expressing Causal Relationships within Neural Network

AI-Partnered Dynamical Modeling for Personalized PK/PD Prediction

ARTICLES

machine intelligence

Deep learning prediction of patient response time course from early data via neural-pharmacokinetic/ pharmacodynamic modelling

James Lu^{@1⊠}, Brendan Bender¹, Jin Y. Jin^{1⊠} and Yuanfang Guan^{@2}

Longitudinal clinical data

<u>Neural-PK/PD Model</u>

Personalized PK/PD Predictions

Genentech

Enabling Improved Personalized Predictions from Early Data

Individual patient predictions

Comparison of Predictivity

	Observation window	Prediction window	Population PK/PD	Neural- PK/PD
२2	t<42 day	t≥42 day	0.39±0.02	0.52±0.01
२2	t<21 day	t≥42 day	-	0.45±0.02

8

Genentech

A Member of the Roche Group

Precision Medicine in Oncology: the Emergence of Multimodal Data

medicine	REVIEW ARTICLE https://doi.org/10.1038/s41591-022-01981-2			
Multimoda	Check for update Al			
Multimodal Diomedical Al				
Julián N. Acosta 💿 ', Guido J. Falcone', Pranav Rajpurkar 😳 2.4 🖂 and Eric J. Topol 💿 3.4 🖂				

AI-Partnered Tumor Dynamics Neural-ODE Model for Personalized Predictions

Prediction

10

Benefits:

- Unbiased tumor dynamic predictions from early data
- Improved patient survival prediction at individual level (metric: c-index)
- Potential to link up with Al models for multimodal data in an explainable manner

Summary

- Dynamical modeling of modern high volume data calls for partnership with Al
- Pharmacology-informed neural network architectures enable construction of models in a principled way
- Al-partnered Neural-ODEs on PK/PD and disease progression data demonstrate ability to enhance personalized predictions
- Integrating Graph Neural Networks with Neural-ODEs in a pharmacology-informed manner shows significant promise for fusing -omics with dynamical data

Genentech

Acknowledgement

Brendan Bender Mark Laurie **Omid Bazgir** Dana Lu Logan Brooks Gengbo Liu Rashed Harun Phyllis Chan Rene Bruno Kenta Yoshida Ben Wu Pascal Chanu Chunze Li Jin Jin Amita Joshi

Genentech

A Member of the Roche Group