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Data Deluge in the Digital Age

>40,000 >20,000 >1,000,000

aNSCLC:

n=12934

Q: How to adapt dynamical modeling (pharmacokinetics/pharmacodynamics, disease progression, ...)
to complex high-dim data for precision medicine?

w | everage Al as Partner in dynamical model discovery Genentech
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Expanding the Language of Dynamical Modeling

Human Mind Artificial Neural Networks
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Al as Partner in Dynamical Model Discovery

Classical Modeling

Al-Partnered Modeling
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Hallmarks of Pharmacology-Informed Neural Network Architectures
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e Express causal relationships between dose, PK, PD
e leverage population data to learn the dynamical law
e Enable “what-if” simulations

Neural Networks
e Learn to obtain useful abstractions of patient data
e Learn toimprove model as the amount of data increases
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Pharmacology-Informed: Expressing Causal Relationships within Neural Network
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Al-Partnered Dynamical Modeling for Personalized PK/PD Prediction

Deep learning prediction of patient response time
course from early data via neural-pharmacokinetic/

pharmacodynamic modelling

James Lu®'*, Brendan Bender', Jin Y. Jin'™ and Yuanfang Guan ©?
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Personalized PK/PD Predictions
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Enabling Improved Personalized Predictions from Early Data
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Precision Medicine in Oncology: the Emergence of Multimodal Data

. — . — . Tumor Dynamics

Jmn

Clinical

nature,, . REVIEW ARTICLE
-}5@@ R a d i o I 0 g i cal medlcme https://doi.org/10.1038/541591-022-01981-2
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Al-Partnered Tumor Dynamics Neural-ODE Model for Personalized Predictions

Data Prediction
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Benefits: 005 250 500 750 1000
e Unbiased tumor dynamic predictions from early data Vark Laurie
e Improved patient survival prediction at individual level (metric: c-index)
Genentech

e Potential to link up with Al models for multimodal data in an explainable manner  Memberofthe Roch Group
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Enhancing Tumor Dynamics Predictions by
Incorporating High Dimensional Data

RNAseq
data

Gene
network
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Early tumor data
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Summary

e Dynamical modeling of modern high volume data
calls for partnership with Al

architectures enable construction of models in a e —

e Pharmacology-informed neural network dy(t) {
principled way

E](v(t), p)

e Al-partnered Neural-ODEs on PK/PD and disease
progression data demonstrate ability to enhance
personalized predictions

e Integrating Graph Neural Networks with Neural-
ODEs in a pharmacology-informed manner shows
significant promise for fusing -omics with
dynamical data Genentech
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