

Simcyp

The development of an Immunogenicity Simulator through a quantitative systems pharmacology consortium approach

Piet van der Graaf & Andrzej Kierzek Certara QSP

Clinical Outcomes, FDA, 3rd October 2018

Problem statement

- Biologicals:
 - ~30% of new drug approvals (12/46 FDA 2017)
 - \$445 billion sales projected 2019
- Immunogenicity (IG):
 - 89% incidence; 49% efficacy impacted

Management of IG will be a significant and recurring topic in interactions between sponsors and regulatory agencies

Wang et al., AAPS J. 18: 395 (2016)

Highly variable

Strand et al., BioDrugs 31: 299 (2017)

Biologic	Frequency of ADAb formation, % (no. of studies ^a)								
	RA	PsA	JIA	AS	Ps	CD	UC	Range	
ABA	2-20 (7)		2-11 (2)					2-20 (9)	
ADA	0-51 (33)	0-54 (8)	6-33 (6)	8-39 (9)	0-51 (12)	0-35 (13)	3–5 (3)	0-54 (80)	
CZP	2.8-37 (7)				21 (1)	3-25 (6)		3-37 (14)	
ETN	0-13 (25)	0 (3)	0-6 (2)	0 (4)	2–5 (5)			0-13 (37)	
GLM	2-10 (11)	6 (1)		0-6.4 (2)			0-19 (8)	0-19 (22)	
INF	8-62 (48)	15-33 (3)	26-42 (2)	6.1-69 (10)	0-41 (12)	3-83 (29)	6-46 (10)	0-83 (110)	
RTX	0-21 (8)							0-21 (8)	
SEC		0-0.1 (3)		0-0.3 (3)	0-1 (8)			0-1 (14)	
TCZ	0-16 (14)		1-8 (3)					0-16 (17)	
UST		8-11 (3)			4-8.6 (10)	0-1 (2)		1-11 (15)	
CT-P13	26-52 (2)			27 (1)		21 (1)	24 (1)	21-52 (5)	

Table 3 Summary of ADAb formation rates for individual biologic/biosimilar by chronic inflammatory disease

Compound

- Dose and administration
- Patient population
- Disease state
- Co-medication
- Other

CERTARA

IG QSP Consortium: rationale

- Management of IG in a diverse patient population is a complex, multifactorial problem
- The use of mechanistic models is well-precedented in such circumstances (i.e. PBPK)
 - Increased regulatory focus on utilizing in-silico models for decision making
 Increased regulatory focus on utilizing in-silico models for How FDA Plans to Help Consumers Capitalize on Advances in Science In silico clinical trials use computer models and simulations to develop and evaluate

Posted on July 7, 2017 by FDA Voice

In silico clinical trials use computer models and simulations to develop and evaluate devices and drugs. Modeling and simulation play a critical role in organizing diverse data sets and exploring alternate study designs. This enables safe and effective new therapeutics to advance more efficiently through the different stages of clinical trials. FDA's efforts in modeling and simulation are enabled through multiple collaborations with external parties that provide additional expertise and infrastructure to advance the development of these state-of-the-art technologies.

FDA's Center for Drug Evaluation and Research (CDER) is currently using modeling and simulation to predict clinical outcomes, inform clinical trial designs, support evidence of effectiveness, optimize dosing, predict product safety, and evaluate potential adverse event mechanisms. We'll be putting out additional, updated guidance on how aspects of these in silico tools can be advanced and incorporated into different aspects of drug development.

→ The Consortium aims to develop the industry-standard quantitative systems pharmacology (QSP) model, coupled to a robust IT platform, to predict and manage IG and guide decision making in drug development

CERTARA^O

Physiologically-based pharmacokinetics (PBPK)

41 Labels with *in-silico* substitutes for clinical data informed by Simcyp

Pfizer	Johnson & Johnson	Tibotec	Ariad	GW Pharma	Lilly
Revatio (Sildenafil) Pulmonary Arterial Hypertension	Xarelto (Rivaroxaban) Deep Vein Thrombosis and Pulmonary Embolism	Edurant (Ripivirine) HIV infection	Iclusig (Ponatinib) Chronic Myeloid Leukemia	Epidiolex (Cannabidiol) Epilepsy	Olumiant (Baricitinib) Rheumatoid Arthritis
Novartis	Janssen	Actelion	Pharmacyclics	AstraZeneca	Genentech
Odomzo (Sonidegib) Basal Cell Carcinoma	Olysio (Simeprevir) Hepatitis C	Opsumit (Macitentan) Pulmonary Arterial Hypertension	Imbruvica (Ibrutinib) Mantie Cell Lymphoma and Chronic Lymphocytic Leukemia	Movantik (Naloxegol) Opioid Induced Constipation	Cotellic (Cobimetinib) Metastatic Melanoma
Genzyme	Sanofi	Novartis	Pfizer	Alkermes	AstraZeneca
Cerdelga (Eliglustat) Gaucher Disease	Jevtana (Cabazitaxel) Prostate Cancer	Zykadia (Ceritinib) Metastatic Non-small Cell Lung Cancer	Bosulif (Bosutinib) Chronic Myelogenous Leukemia	Aristada (Aripiprazole lauroxil) Schizophrenia	Lynparza (Olaparib) Advanced Ovarian Cancer
Novartis	Eisai	Genentech	AstraZeneca	Amgen	AstraZeneca
Farydak (Panobinostat) Multiple myeloma	Lerwima (Lerwatinib) Thyroid cancer	Alecensa (Alectinib) Non-small Cell Lung Cancer	Tagrisso (Osimertinib) Metastatic NSCLC	Blincyto (Blinatumomab) Acute Lymphoblastic Leukemia	Calquence (Acalabrutinib) Mantle Cell Lymphoma
Eli Lilly	Intercept	Actelion	Janssen	Merck	Merck
Verzenio (Abemaciclib) Metastatic Breast Cancer	Ocaliva (Obeticholic acid) Primary Biliary Cholangitis	Uptravi (Selexipeg) Pulmonary Arterial Hypertension	Invokana (Canagliflozin) Type 2 Diabetes	Prevymis (Letermovir) Cytomegalovirus	Steglujan (Ertugliflozin) Type 2 Diabetes
Novartis	PTC Therapeutics	Shionogi	Spectrum	UCB	Vertex
Kisqali (Ribociclib succinate) Metastatic Breast Cancer	Emflaza (Deflazacort) Duchenne Muscular Dystrophy	Symproic (Naldemedine) Opioid Induced Constipation	Beleodaq (Belinostat) Peripheral T-cell Lymphoma	Briviact (Brivaracetam) Epilepsy	Symdeko (Tezacaflor/ivacaflor) Cystic Fibrosis
Novartis	Ariad	Janssen	Helsinn	AkaRx	l
	Alunhria (Brigatinih)	Erlearta (Analutamide)	Akynzeo	Dontelot	

FDA submissions using PBPK modelling

Majority related to drug-drug interactions (DDIs, ~ 60%); pediatrics ranks the second

Ping Zhao

Consortium approach

CERTARA

Building the industry standard IG Simulator:

- Sharing knowledge/resources/data
- Consensus on science and common tools/standards
- Engaging academics and regulators through publication & education (a.o. upcoming British Pharmacological Society, ASCPT and European Immunogenicity Platform conferences)

 Ability for individual members to integrate confidential data/knowledge/models on a continuous and seamless manner

Certara's QSP Platform

Each QSP Consortium is a tree, where trunk represents biology common to all applications, while branches and leaves represent target specific mechanisms. Consortia are rooted in QSP Platform.

IG QSP Consortium: Facts and Figures

- Launched January 2017
- Six member companies
- Initial duration 3 years
- Monthly Webinar meetings
- Annual Face-Face
- Supported by ~10 Certara staff (QSP, IT, Operations)
- G: Certara QSP IG Consortium
 - Multi-disciplinary team of ~50 experts
 - 2 Sub-teams: In Vitro Assays and IT

CERTARA.O

The IG QSP Consortium model and simulator

Citation: CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e134; doi:10.1038/psp.2014.31 © 2014 ASCPT All rights reserved 2163-8306/14

www.nature.com/psp

ORIGINAL ARTICLE

A Mechanistic, Multiscale Mathematical Model of Immunogenicity for Therapeutic Proteins: Part 2—Model Applications

X Chen¹, TP Hickling² and P Vicini³

The AAPS Journal, Vol. 16, No. 5, September 2014 (© 2014) DOI: 10.1208/s12248-014-9640-5

Lymph

DRB1*13:02

0.0394

4000

168

Research Article

Competitive equilibrium binding of endogenous and exogenous IgG to

FcRn with independent affinities

Linzhong Li,13 Iain Gardner,1 Miroslav Dostalek,2 and Masoud Jamei

Application

Extrapolation to population with different HLA allele frequencies.

Personalised & Precision medicine: Prediction of PK and IG for genotyped individual.

Extrapolation to larger populations. (Phase III, IV)

IG Management: Extrapolation to different dosing regimes.

Extrapolation to paediatric population or individual children.

Extrapolation to disease population.

Extrapolation to age group.

Prediction of the effect of co-therapy

Kapil Gadkar & Jennifer Rohrs

Bio-informatics analysis alone does not predict clinical ADA response

Antibody Drug	# Binding peptides*	# MHC II alleles	% ADA+ Patients	
Bococizumab (Pfizer)	2	12	68% (Ridker, 2017)	
Alirocumab (Regeneron)	1	1	5.1% (Roth, 2017)	
Evolocumab (Amgen)	0	0	0.1% (Henry, 2016)	
GNE anti-PCSK9 (Genentech)	2	8	4% (GENE data*)	

* Based on Phase II clinical study with ~200 subjects

Managing Immunogenicity Using Quantitative Systems Pharmacology

Piet van der Graaf, Andrzej Kierzek, & Timothy Hickling

- Review on biologics drug development using MIDD approaches and managing immunogenicity with the IG Simulator
- Available for download on the Certara <u>Quantitative</u> <u>Systems Pharmacology</u> web site

https://www.certara.com/consulting/systems-pharmacology/?ap%5B0%5D=CSC&ap%5B1%5D=CSC

piet@certara.com

Overview of IG Simulator

© Copyright 2018 Certara, L.P. All rights reserved.

Modular Biological Process Map interface

Modules encapsulate complex mechanisms which are connected to the model through well defined interfaces. This facilitates both visualisation and consortium team development of multiscale mechanistic models.

Connection to Simcyp PBPK model

Specie "Ag" in biological process map is merged with variable "Substrate exogenous plasma concentration" in Simcyp PBPK. The ODE for Simcyp variable is augmented by rate laws of ADA binding and Immune Complex dissociation.

CERTARA

Simcyp simulator with Immunogenicity screens

Simcyp (QSP IG) Version 17 Release 1: Adalimumab_Bartelds_0.003 — 🗖 💌							
File Options Tools View Licensing N	tifications Help Resources						
open Save Clear	imulation Prediction Annotation Sensi	hity P.E. Batch	Real Tim	e Results	Post P. Sc	ientist View	
Workspace Wsp-SB-Adalimumab SIM # CYP							
Population Wsp-Wsp-Ws_ Substrate Wsp-Wsp-SB PKPD Types Profiles Trial Design	Run simulation using: Minimal PBPK Full PBPK Mod Minimal PBPK Full PBPK Mod Full PBPK Mod FcRn-mediated pathway 1:1 bin	dodel for mAbs el for mAbs Model for other proteins el for other proteins ding		○ 2:1 binding			
	FcRn binding (pH 6.0)	01		Maan	01		
Phys Chem and Blood Binding	K _{D1} (µM) 0.672	10	K _{D2} (µM)	2.912	30		
Distribution	Fluid phase uptake and recycling					_	
Elimination TMDD Brain	K _{up} (1/h) 0.0298 K _{rc1} (1/h) 0.548		FR K _{rc2} (1/h)	0.715			
MHC II Epitopes	Convective and diffusive pathway						
PD Basic 1	ov (Sigmav) 0.76		σι (Sigmai)	0.2			
%							

- The compound section of Simcyp biologics model has been expanded to allow input of antigenic peptide binding constants.
- Population section of Simcyp has been expanded
- Allele frequencies are used to generate MHC II binding constants for individual subject Correlated Monte Carlo simulation of a clinical trial.

👔 Simcyp (QSP IG) Version 17 Release 1: Adalimumab_Bartelds_0.003 🛛 – 🗖 💌							
File Options Tools View Licensing N Open Save Clear	otifications Help Resources	Sensitivity P.E.	Batch Real Time Res	Rost P. Scientist View			
Workspace Adalimumab_Bartel.							
Population Wsp-Wsp-Ws • Substrate Wsp-Wsp-SB •	Number Of Epitopes 2 Weak Binding Constant (nmol/L) 4000						
Profiles	MHC II Allele	Gene	Epitope 1 Binding Constant	Epitope 2 Binding Constant			
Trial Design	> DRB1*04:01	DRB1	82	56.7			
	DRB1*04:03	DRB1	52.35	98.57			
Phys Chem and Blood Binding	DRB1*04:04	DRB1	120	25.33			
Absorption	DRB1*04:07	DRB1	83.15	69.44			
Flimination	DRB1*04:11	DRB1	38.29	67.67			
TMDD	DRB1*07:01	DRB1	50	51.33			
Brain	DRB1*08:02	DRB1	204	194.67			
MHC II Epitopes	DRB1*08:11	DRB1	74.95	4000			
PD Basic 1	DRB1*11:01	DRB1	211.33	195.33			
	DRB1*14:04	DRB1	35.8	4000			
	DRB1*15:01	DRB1	98.67	4000			
	Rest of DRB	DRB1	4000	4000			
	DQ	DQ	4000	4000			
%	DP	DP	4000	4000			

CERTARA

Trial design

Simcyp simulator is modularised into System, Compound, Population and Trial design. Trial screens specify number of subjects from target Population and dosing regime of the Compound. Virtual trial is then simulated with Correlated Monte Carlo approach. In IG Simulator, Compound and Population files include IG specific parameters and simulation is run with multiscale model integrating PBPK and Immune response parts.

Running simulation

Before simulation is run the model is verified. This includes unit dimensionality verification as well as unit conversion.

Clinical trial simulation: output

Simulation of Adalimumab clinical trial of Bartelds et al (JAMA. 2011;305(14):1460-1468). Simulated time profiles were analysed following patient classification criteria used by authors allowing direct comparison with clinical data. The threshold for weak ADA+ (green) group has been modified, but our simulation predicted existence of distinct group. We find different ADA reporting methods to be major challenge in development of predictive models. Mechanistic model simulating both compound and ADA dynamics allows integration of studies using different reporting criteria and will facilitate harmonisation.

Acknowledgements

- Abbvie
- Astellas
- **BMS**
- Genentech/Roche ullet
- Lilly •
- Pfizer

Certara QSP IG Consortium Team

Leadership

Science: IG Model development

IT: IG Simulator development

Mario Giorgi

Maciej Swat

Neil Benson

Piet van der Graaf

Ben Small

@ Copyright 2018 Certata, L.P.: All rights reserved.

