De-Risking Protein Therapeutics: Should you Delete that T cell Epitope or Keep it? And Why . . .

Anne S. De Groot MD

CEO/CSO, EpiVax, Inc. Director, Institute for Immunology and Informatics Professor (Research) Univ. Rhode Island

Acknowledgements

Annie De Groot **Bill Martin Christine Boyle** Frances Terry Matt Ardito **Guilhem Richard**

Nik Petrovsky **Dimitar Sajkov** David Gordon

AI09035, AI132205

Institute for Immunology and Informatics

Rui Liu Andres Gutierrez

SANOFI PASTEUR 🌄

Manon Cox

Lisa Dunkle

Don Drake

Brian Schanen

NIID 国立感染症研究所

 $\widehat{\Pi}$

The University of Georgia

Ted Ross

Bradford Lefoley

Rayleigh Chan

Manabu Ato Yoshi Takahashi Indresh Srivastava Arnone Nithichanon Valerie Mermall

Celia Schiffer Nese Kurt Yilmaz Shurong Hou

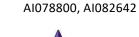
Additional Active Vaccine Collaborators

EpiVax

Bill Martin Lenny Moise Frances Terry Leslie Cousens Ryan Tassone Howie Latimer Mindy Marshall Lauren Levitz Christine Boyle

AI058326, AI058376,

Don Drake, Brian Schanen


University of Massachusetts UMASS. Medical School

Hardy Kornfeld Jinhee Lee Liisa Selin

Mark Poznansky Tim Brauns Pierre LeBlanc

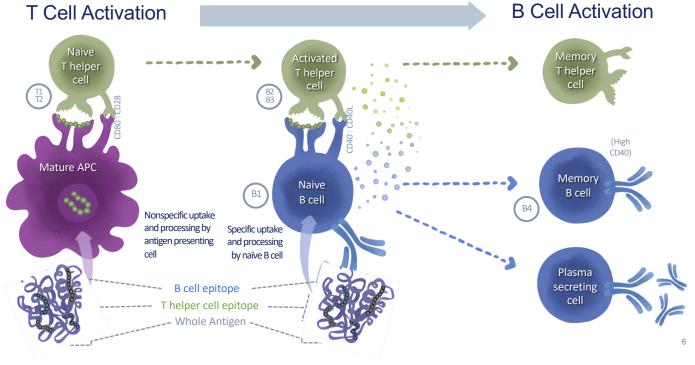
EpiVax - confidential

SAINT LOUIS UNIVERSITY Sharon Frey Mark Buller Jill Schreiwer EpiVax

Institute for Immunology and Informatics Alan Rothman Carey Medin Andres Guitierrez Danielle Aguirre Joe Desrosiers Thomas Mather Wendy Coy Loren Fast

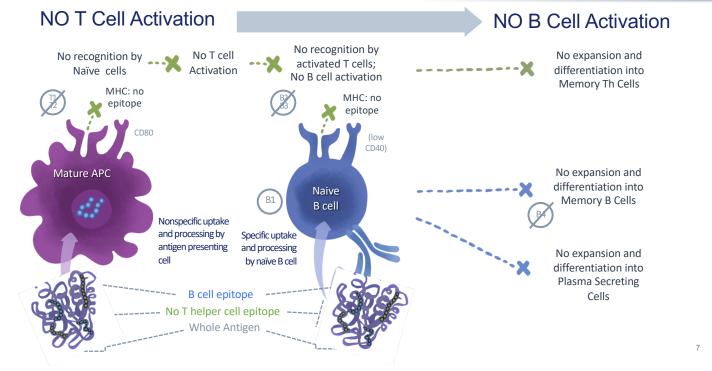
Connie Schmaljohn Lesley C. Dupuy

SIGIN 520


FLORID

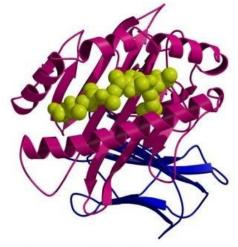
- Defining *Immunogenic/Tolerogenic* Epitopes In Silico Yes, We Can.
- Comprehensive Immunogenicity Risk Assessment (Includes In Vitro)
- Cutting Edge Tools: JanusMatrix and Tregitope
- Immune Engineering Immunogenicity and Tolerance

Presence of T cell epitopes drives ADA



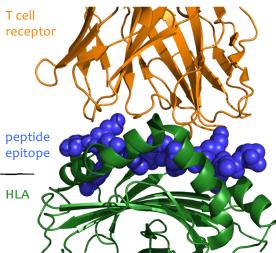
Activation of CD4 T cells and the T-dependent antibody response

Absence of T cell epitopes reduces ADA

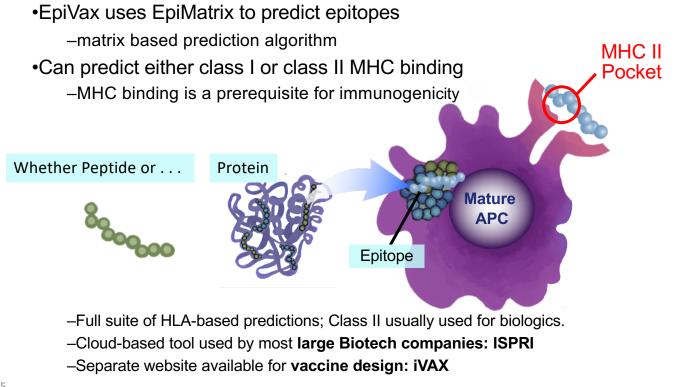


Lack of T cell epitopes abrogates activation of CD4 T cells and T-dependent antibody response

What does the T cell See? Linear Epitopes Strominger, Chicz (and others)

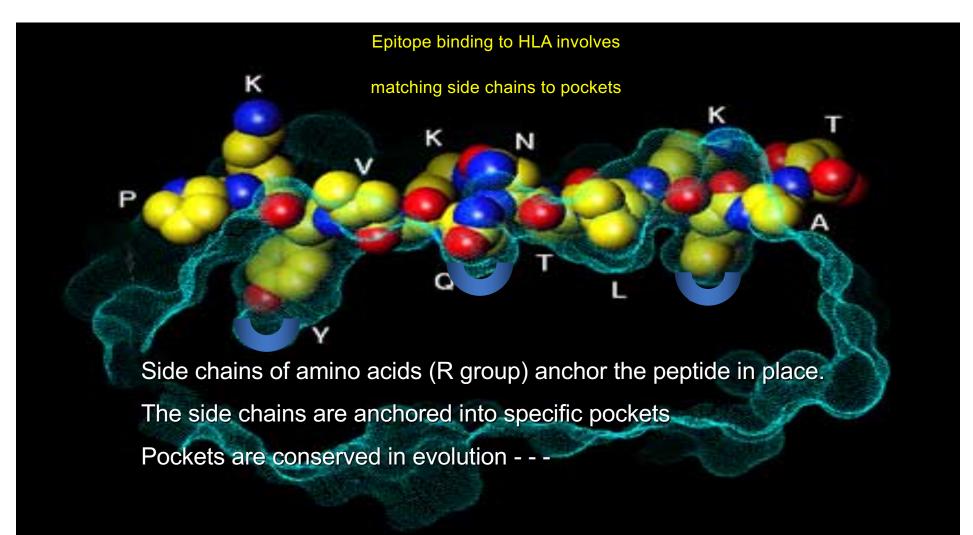

Published July 1, 1993

Specificity and Promiscuity among Naturally Processed Peptides Bound to HLA-DR Alleles


By Roman M. Chicz, Robert G. Urban, Joan C. Gorga, Dario A. A. Vignali, William S. Lane,^{*} and Jack L. Strominger

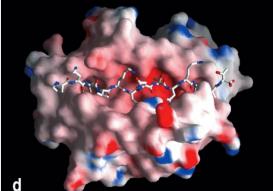
From the Department of Biochemistry and Molecular Biology and the *Harvard Microchemistry HLA Facility, Harvard University, Cambridge, Massachusetts 02138

Identifying T cell epitopes Is key to assessing Immunogenicity Risk



6/30/2015

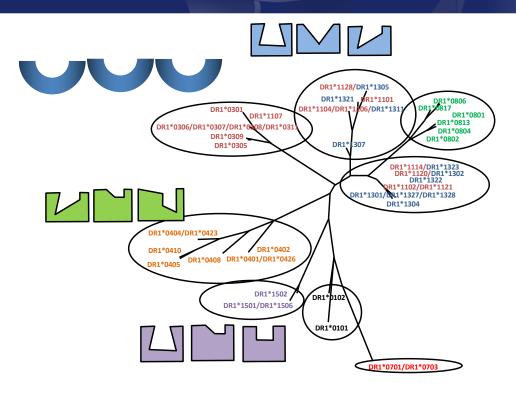
- Defining T cell Epitopes In Silico Yes, We Can.
- Comprehensive Immunogenicity Risk Assessment (Includes In Vitro)
- Cutting Edge Tools: The two-faced T cell epitope and Tregitopes
- Immune Engineering Immunogenicity and Tolerance
- Personalizing immunogenicity Risk



http://www.umassmed.edu/pathology/graphics/sternfig1.jpg (malaria epitope in DRB1*0101)

HLA Pocket Profiles – Are Redundant Sturiolo and Hammer 1999

EpiVax



Pockets/positions В 2 3 1 040 HLA II Alleles 0405 0801 1101 С Pocket 9 Pocket 9 - DRB1*0401 - DRB1*1101 DRB1*0401 1000 1000 MB **Relative binding** 100 10 10 0.01 0.00 0.001 Pocket 9 - DRB1*0401 - DRB1*0801 →DRB1*0405 →DRB1*0801 1000 1000 100 100 0.01 0.00 0.001 Peptide amino acids

- We maintain a set of allele specific models of MHC-ligand binding.
- We refer to these models collectively as the EpiMatrix System.
- "Matrix" models are driven by a 20x9 set of coefficients (one for each binding position and amino acid).
- Matrices can be combined with pocket profiles to develop new prediction tools.

HLA "Supertype" Families – Pockets are Similar

EpiVax tests for binding potential to the most common HLA molecules within each of the "supertypes"* shown to the left.

This allows us to provide results that are representative of >95% of human populations worldwide** without the necessity of testing each haplotype individually.

*Lund et al. Definition of Supertypes for HLA Molecules Using Clustering of Specificity Matrices. Immunogenetics. 2004; 55(12):797–810.

**Southwood et al. Several Common HLA-DR Types Share Largely Overlapping Peptide Binding Repertoires. J Immunol. 1998; 160(7):3363–73.

HLA "Supertype" Families – Pockets are Similar

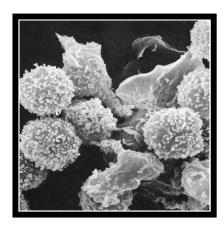
We assess for binding potential to the most common HLA molecules within each of the "supertypes"* shown to the left.

This allows us to provide results that are representative of >95% of human populations worldwide** without the necessity of testing each haplotype individually.

*Lund et al. Definition of Supertypes for HLA Molecules Using Clustering of Specificity Matrices. Immunogenetics. 2004; 55(12):797–810.

**Southwood et al. Several Common HLA-DR Types Share Largely Overlapping Peptide Binding Repertoires. J Immunol. 1998; 160(7):3363–73.

Antigen Presenting Cell Math: Immunogenicity = sum of epitopes divided by length

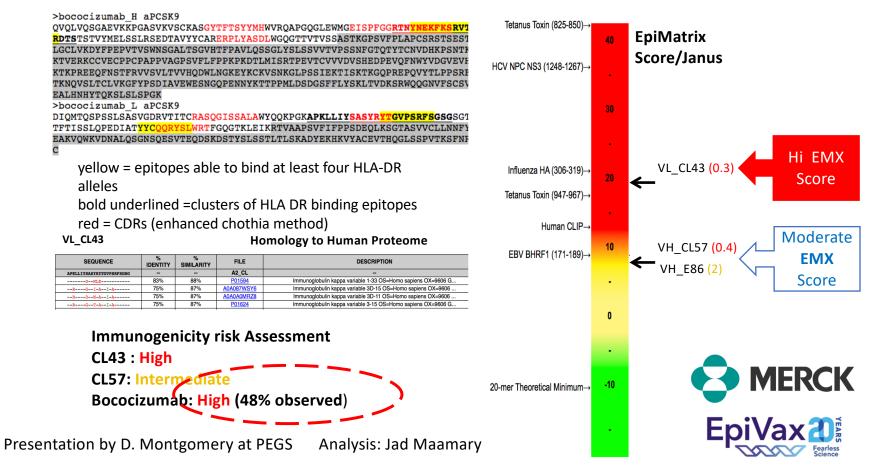

Protein Therapeutic:

epitopeepitopeepitope1 + 1 + 1 = ResponseT cell response is defined by

<u>T cell epitope content</u> + <u>HLA of subject</u>

Protein and peptide immunogenicity can be ranked

De Groot A.S. and L. Moise. Prediction of immunogenicity for therapeutic proteins: State of the art. Current Opinions in Drug Development and Discovery. May 2007. 10(3):332-40.



Each of these T cells is probably reacting to a different T cell epitope on the surface of the DC: Visual SUM of the immune response

EpiMatrix, ClustiMer and JanusMatrix put to use in a recent study by Diane Montgomery of Merck

bococizumab anti-PCSK9: in silico

Breaking down the protein or peptide Into overlapping frames and scoring each frame

EpiMatrix Report

File: Your File - Sequence: Your Protein

	Frame Start	AA Sequence	Frame Stop	DRB1*0101 Z-Score	DRB1*0301 Z-Score	DRB1*0401 Z-Score	DRB1*070 Z-Score	I DRB1*0801 Z-Score	DRB1*1101 Z-Score	DRB1*1301 Z-Score	DRB1*1501 Z-Score	Hits	
	1	APELLGGPS	9	0.1	-0.88	-0.34	-0.84	-0.65	-0.4	-1.72	-0.17	0	
	2	PELLGGPSV	10	1.07	-0.62	0.33	0.13	-0.09	0.39	-0.28	0.59	0	
	3	ELLGGPSVF	11	-0.17	0.45	0.26	0.48	-0.28	-0.21	-0.11	-0.32	0	
	4	LLGGPSVFL	12	1.78	1.73	1.43	1.87	0.69	0.29	1.24	1.93	4	
	5	LGGPSVFLF	13	-0.21	0.4	-0.13	0.46	-0.32	0.07	0.99	-0.02	0	
Individual HLA	· · ·												
Rindiing Assossment	1.												
Bindiing Assessment	87	KEYKCKVSN	95	-0.68	0.07	-1.29	-0.96	1.31	-0.09	0.52	-0.61	0	
	88	EYKCKVSNK	96	-0.75	-1.04	0.44	-0.78	0.67	-0.64	-0.97	-1.6	0	
	89	YKCKVSNKA	97	1.85	1.92	1.94	2.58	2.47	2.41	1.56	1.4	6 ┥	Populations
	90	KCKVSNKAL	98	1.15	0.11	0.44	1.59	0.21	0.52	0.53	1	0	Populations
	91	CKVSNKALP	99	-0.06	1	0.06	-0.47	0.69	1.47	0.86	-0.18	0	
	92	KVSNKALPA	100	1.6	1.41	1.92	1.26	1.09	1.86	1.54	1.4	2	
	93	VSNKALPAP	101	-1.29	0.19	-1	-0.98	1.05	0.66	0.74	-0.28	0	
	94	SNKALPAPI	102	1.28	1.45	0.8	1.05	0.77	0.55	1.62	0.98	0	
	95	NKALPAPIE	103	0.62	0.3	0.48	-0.19	1.65	0.76	0.62	0.26	1	
								Т					
	205	HYTOKSLSL	213	1.44	0.63	1.24	1.46	0.52	0.94	1.49	1.46	0	Individuals
	206	YTOKSLSLS	214	0.68	1.68	0.76	0.86	2.46	2.02	2	0.94	4	
	207	TOKSLSLSP	215	0.8	0.75	1.4	1.54	0.25	1.09	0.56	0.8	0	
	208	OKSLSLSPG	216	0.68	0.54	0.67	-0.18	1.64	1.42	0.65	0.95	0	
	209	KSLSLSPGK	217	0.66	0.57	0.94	0.39	0.47	1.02	0.33	0.8	0	
		mmarized Resu						1 DRB1*0801		DRB1*1301		Total	
		imum Single Z-s		2.18	2.5	2.42	2.63	2.47	2.41	2.84	2.49		
		of Significant Z-s		20.14	23.2	22.19	26.64	27.15	20.78	21.88	10.08	172.05	
		of Significant Z-		11	12	11	14	13	11 11 5 88				EpiMatrix Immunogenicity S
	Total Assessments Performed: 1672		med: 1672	Deviation from Expectation: -13.95			Deviation per 1000 AA: -8.34						
	Ad	justed for Regu	ulatory	Epitopes	Dev	iation from E	xpectation:	-34.27	Deviation per 1000 AA: -20.50			Ç	Tregitope-adjusted Score
						Non Co	onfidentia	al					19

HLA Restricts Immune Response (Personalizing Risk Assessment) / iTEM

Protein Therapeutic:

epitope	epitope	epitope	Different HLA, Different Binding Pockets
1 + 1	+ 1 = Respons	е	
T cell r	esponse depends c	n:	
<u>T cell epitop</u>	e content + HLA of	<u>subject</u>	HLA-DR B*0101
≻ protein imm	unogenicity can l	be ranked	
	Prediction of immunogenicity for therapeut Drug Development and Discovery. May 200	•	HLA-DR B*0301

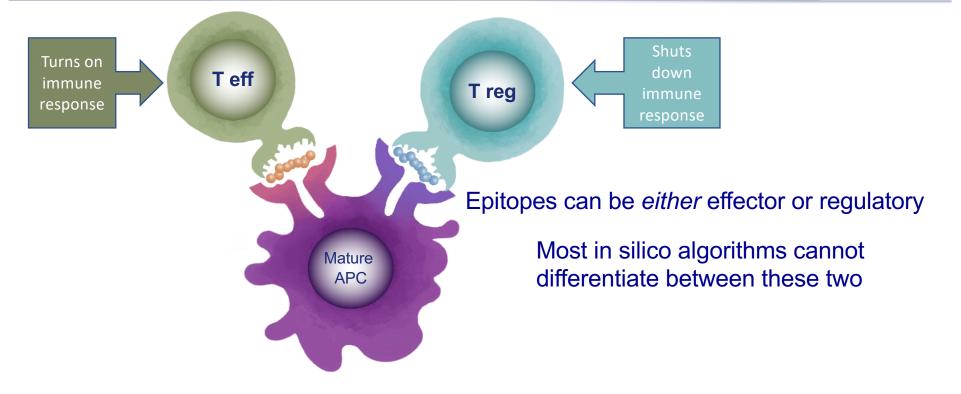
iTEM Analysis – Individualized T cell Epitope Measure HLA Background Defines Personalized Immunogenicity

	\bigwedge							\bigcirc	
	DRB1*0101 Z-Score	DRB1*0301 Z-Score	DRB1*0401 Z-Score	DRB1*0701 Z-Score	DRB1*0801 Z-Score	DRB1*1101 Z-Score	DRB1*1301 Z-Score	DRB1*1501 Z-Score	Hits
Immunogenicity is	, 2-ocore	2-00016	2-00016	2-00016	2-00016	2-00016	2-00016	2-00016	0
									0
HLA Restricted	2.69	1.91	1.96	1.57		1.66	2.07	1.65	0
	2.69	1.91	1.96	1.57	1.58	1.00	2.07	C0.1	1
DRB1*0101 is predicted	2.15	1.8	2.14	2.19	1.77	1.72	1.75	1.61	7
									0
to present this peptide									0
more effectively	0RB1*010	DRB1*0301	DRB1*0401	DRB1*0701	DRB1*0801	DRB1*1101	DRB1*1301)RB1*150	0 Total
than DRB1*1501	2.69	1.91	2.14	2.19	1.77	1.72	2.07	1.65	
INAN DRDT 1501	4.84	3.71	5.87	2.19	1.77	3.38	3.82	1.65	27.23
		2 bicity: -0.52	3 EniM	1 atrix Score:	10.91	2 EpiMot	2 rix Secre (w		14
	<u> </u>	DICILY: -0.52	Ерім	auta Score:	19.01	Epiwat	r <mark>ix Score (v</mark>	5): 24	4.76

Different Immune Response Expected

Highly Relevant to Enzyme and Factor Replacement Therapy

Immunogenicity and Tolerance: Role of Tregs



If, immunogenic potential increases with increasing T cell epitope content,

What is the impact of Treg epitopes?

Characterizing Putative T cell Epitopes

Discovery of Treg + epitopes = Tregitopes In an Abundant Protein: IgG – Tolerizing Epitopes

009 029 084 167 289 CDR

Identification of highly conserved epitopes while screening Mabs

- 15-20 mer peptides in conserved regions
- Strong signals for T cells ("EpiBars")
- Highly conserved among IgG molecules
- Conserved across species (mouse...)
- One mechanism of action of IVIg?
- Induce natural Tregs to modify immune response ... and expand iTregs in vitro and in vitro

De Groot A.S., et al., Activation of Natural Regulatory T cells by IgG Fc-derived Peptide "Tregitopes". Blood, 2008,112: 3303. <u>http://tinyurl.com/ASDeGroot-Blood-2008</u>

Published in Blood, 25 July 2008

Reprints available on request

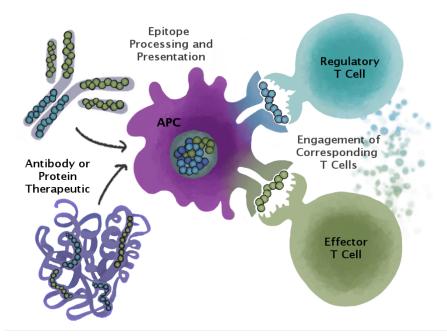
IMMUNOBIOLOGY

Activation of natural regulatory T cells by IgG Fc-derived peptide "Tregitopes"

Anne S. De Groot,^{1,2} Leonard Moise,¹ Julie A. McMurry,¹ Erik Wambre,³ Laurence Van Overtvelt,³ Philippe Moingeon,³ David W. Scott,⁴ and William Martin¹

1EpiVax, Providence, RI; 2University of Rhode Island, Providence, RI; 2Stallergenes, Anthony, France; 4University of Maryland, College Park, MD

We have identified at least 2 highly promiscuous major histocompatibility complex class II T-cell epitopes in the Fc T cells, and caused an increase in cell fragment of IgG that are capable of specifically activating CD4+CD25_{Hi}FoxP3+ natural regulatory T cells (nT_{Regs}). Coincubation of these regulatory T-cell epitopes or "Tregitopes" and antigens with peripheral blood mononuclear cells led to a


suppression of effector cytokine secretion, reduced proliferation of effector surface markers associated with TReas such as FoxP3. In vivo administration of the murine homologue of the Fc region Tregitope resulted in suppression of immune response to a known immunogen. These data suggest that one mechanism

for the immunosuppressive activity of IgG, such as with IVIG, may be related to the activity of regulatory T cells. In this model, regulatory T-cell epitopes in IgG activate a subset of nT_{Regs} that tips the resulting immune response toward tolerance rather than immunogenicity. (Blood. 2008;0:000-000)

http://bit.ly/Tregitope API

Tregitopes Actively Suppress Immune Response and induce Antigen-Specific Tolerance

De Groot A.S., et al., Activation of Natural Regulatory T cells by IgG Fc-derived Peptide "Tregitopes". Blood, 2008,112: 3303. http://tinyurl.com/ASDeGroot-Blood-2008

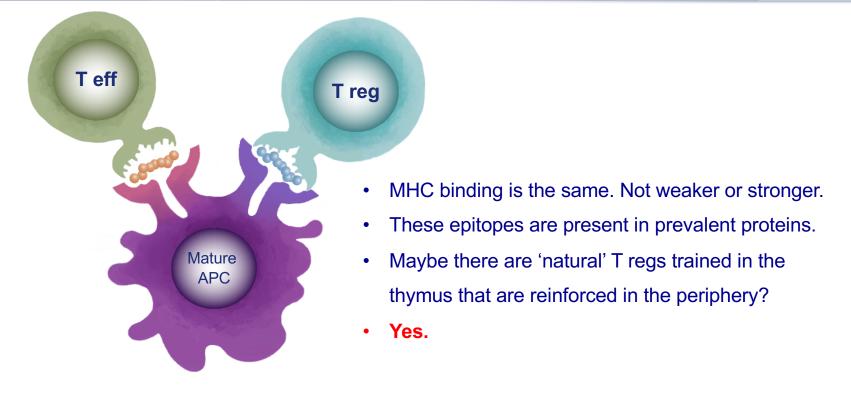
- Discovered & patented by EpiVax
- Highly conserved peptide sequences in Fc and Fab regions of antibodies
- High affinity, promiscuous binders across HLA alleles
- One mechanism of action of IVIG?
- Activate antigen-specific regulatory T cells
- Can be co-formulated or synthesized with therapeutic proteins or carriers

EpiVax - Confidential

•

Adjust for Treg epitopes when Measuring Immunogenic Potential

Peptides OR Antibodies:


epitope	epitope		Tregitope						
1 + 1 -	1 = Res	ponse							
T cell res	ponse depe	ends on:							
<u>T cell epitope content</u> –	<u>Fregitope co</u>	ontent +	HLA of subject	<u>ct</u>					

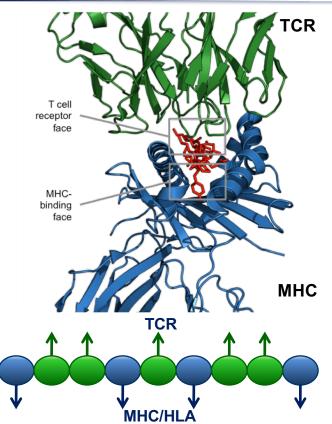
- Defining T cell Epitopes In Silico Yes, We Can.
- Comprehensive Immunogenicity Risk Assessment (Includes In Vitro)
- Cutting Edge Tools: The two-faced T cell epitope and Tregitopes
- Immune Engineering Immunogenicity and Tolerance

You asked: "Why are they Treg epitopes?" We answered ...

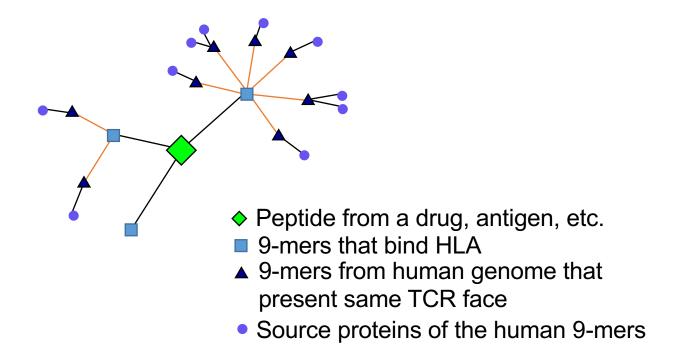
Tool for defining Tregs using "Epitope Networks" JanusMatrix

Each MHC ligand has two faces: The MHC-binding face: agretope and the TCR-interacting face: epitope

Find predicted 9-mer ligands with:


- Identical T cell-facing residues
- Same HLA allele and minimally different MHC-facing residues

Hum Vaccin Immunother. 2013 Jul 1; 9(7): 1577–1586. Published online 2013 Apr 12. doi: 10.4161/hv.24615 PMCID: PMC3974887 PMID: 23584251


The two-faced T cell epitope

Examining the host-microbe interface with JanusMatrix Leonard Moles, ^{1, 2} Andres H. Gutiernz, ¹Chris Balley-Kelloga, ⁹ Frances Terry, ² Olbin Leng, ⁴ Karim M. Abdel Hady, ⁵ Nathan C. Verßertmose, ⁶ Marcelo B. Sctein, ⁷ Phyllis T. Losikott, ⁸ William D. Martin, ² Alan L. Rothman, ¹ and Anne S. De Group ^{1, 2, 2}.

Epitope Networks: A visual map of epitope cross-conservation

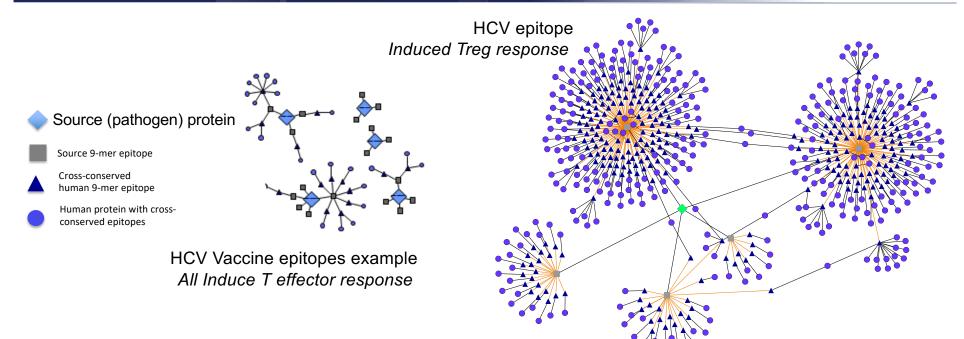
The Two Faced T cell epitopes – Immune Camouflage Commensal pathogens self/non-self relationships

Immune Camouflage

Originated with discovery about pathogens "copy/pasting" epitopes that looked like human Treg epitopes in their own genomes

Commensal pathogens e.g. CMV, EBV, HSV have the lowest number of T effector epitopes and the highest number of "selflike" putative Treg epitopes

 Ham Machinementher. 2014 Dev. 101(2): 3270-3375.
 PMCD: PMCD: PMCD: PMCD: 24500


 Patiened online 2014 Nov 1. doi: 10.101/hbx0134
 PMID: 264200

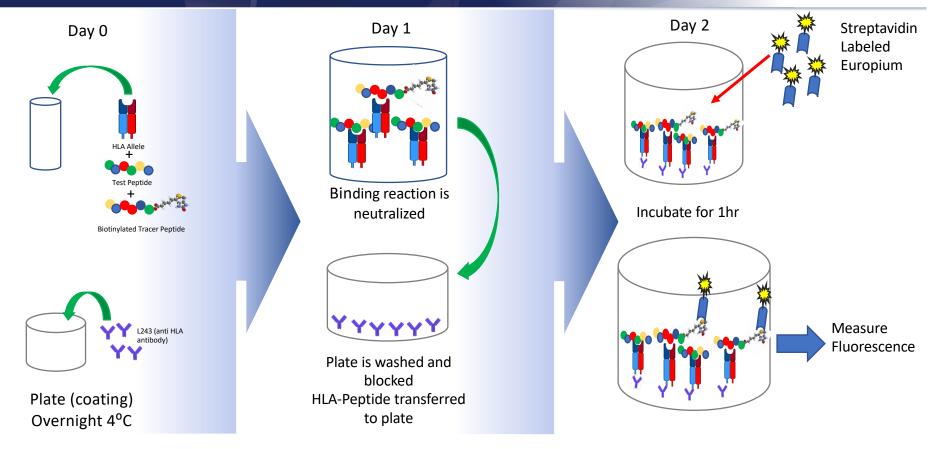
 Immune camouflage: Relevance to vaccines and human immunology
 Andres 1D & Good. 1²⁴

 Mares 2D & Good. 1²⁴
 Find Liu/2² Addres H Guterrat.²

William Martin¹ Author information ► Article notes ► Copyright and License information ► Disclaimer

Published example from HCV Teff vs. Treg epitopes identified by JanusMatrix

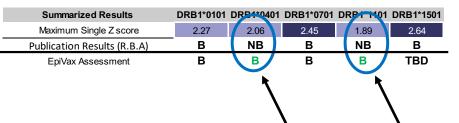
EpiVax


Losikoff PT, Mishra S, Terry F, Gutierrez A, Ardito MT, Fast L, Nevola M, Martin WD, Bailey-Kellogg C, De Groot AS, Gregory SH. **HCV Epitope, Homologous to Multiple Human Protein Sequences, Induces a Regulatory T Cell Response in Infected Patients.** J Hepatol. 2014 Aug 22. pii: S0168-8278(14)00613-8. doi: 10.1016/j.jhep.2014.08.026.

- Defining T cell Epitopes In Silico Yes, We Can.
- Comprehensive Immunogenicity Risk Assessment (Includes In Vitro)
 - Binding and T cell Assays (including Treg assays)
- Cutting Edge Tools: The two-faced T cell epitope and Tregitopes
- Immune Engineering Immunogenicity and Tolerance
- T cell epitopes and Generic Peptide PANDA-monium

HLA-Binding Assay Overview

Not all HLA binding assays are the same More sensitive assays may uncover binding that was missed


Peptide As Published – Repeat Assay

Characterization of CD4 T Cell Epitopes of Infliximab and Rituximab Identified from Healthy Donors

Moustafa Hamze¹, Sylvain Meunier¹, Anette Karle², Abdelaziz Gdoura¹, Amélie Goudet¹, Natacha Szely³, Marc Pallardy³, Franck Carbonnel⁴, Sebastian Spindeldreher², Xavier Mariette⁵, Corinne Miceli-Richard⁵ and Bernard Maillère^{1*}

¹ CEA-Saclay, Institut de Biologie et Technologies, Université Paris-Saclay, Gif sur Yvette, France, ² Novartis Pharma AG, Basel, Switzerfand, ³ INSERM UMR 996, Faculté de Pharmacie, Université Paris-Sud, Chatenay Malabry, France, ⁴ Service de gastro-entérologie, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicétre, France, ⁶ INSERM UMR 1184, Assistance Publique-Hôpitaux de Paris, Sarvice de Rhumatologie, Hôpitaux Universitei Paris-Sud, Le Kremlin-Bicétre, France, ⁵ INSERM UMR 1184, Assistance Publique-Hôpitaux de Paris, Sarvice de Rhumatologie, Hôpitaux Universitei Paris-Sud, Le Kremlin-Bicétre, France, ⁶ INSERM UMR 1184, Assistance Publique-Hôpitaux de Paris, Sarvice de Rhumatologie, Hôpitaux Universitei Paris-Sud, Le Kremlin-Bicétre, France, ⁶ INSERM UMR 1184, Assistance Publique-Hôpitaux de Paris, Sarvice de Rhumatologie, Hôpitaux Universitei Paris-Sud, Le Kremlin-Bicétre, France, ⁶ INSERM UMR 1184, Assistance Publique-Hôpitaux de Paris, Sarvice de Rhumatologie, Hôpitaux Universitei Paris-Sud, Le Kremlin-Bicétre, France, ⁶ INSERM UMR 1184, Assistance Publique-Hôpitaux de Paris, Sarvice de Rhumatologie, Hôpitaux Universitei Paris-Sud, Le Kremlin-Bicétre, France, ⁶ INSERM UMR 1184, Assistance Publique-Hôpitaux de Paris, Sarvice de Rhumatologie, Hôpitaux Universitei Paris-Sud, Le Kremlin-Bicétre, France, ⁶ INSERM UMR 1184, Assistance Publique Hôpitaux Université Paris-Sud, Le Kremlin-Bicétre, France, ⁶ INSERM UMR 1184, ⁶ Nature, ⁶ Natu

			20	_IL1-15	Cluster:	1				
Frame	AA Sequence	Frame	Hydro-	DRB1*0101	DRB1*0401	DRB1*0701	DRB1*1101	DRB1*1501		
Start		Stop	phobicity	Z-Score	Z-Score	Z-Score	Z-Score	Z-Score		
1	DILLTQSPA	9	0.42	0.75	0.23	0.4	0.59	-0.02	1	Two strong
2	ILLTQSPAI	10	1.31	2.27	1.65	2.45	1.24	2.64	-/	EpiBars
3	LLTQSPAIL	11	1.23	2.07	1.51	1.32	1.76	1.35		
4	LTQSPAILS	12	0.72	2	2.06	1.73	1.89	1.91		
5	TQSPAILSV	13	0.77	-0.61	0.17	0.81	-0.27	0.15		
6	QSPAILSVS	14	0.76	-0.66	-0.23	-0.83	-0.05	0.1		
7	SPAILSVSP	15	0.97	-0.16	0.28	-0.11	-0.7	-0.22		
-	~									

Observed HLA binding in EpiVax HLA binding assay (8 point curve) where publication (yes/no binding) did not observe binding.

EpiVax - confidential

10/3/18

Centering HLA DR binding motif improves HLA binding assay performance

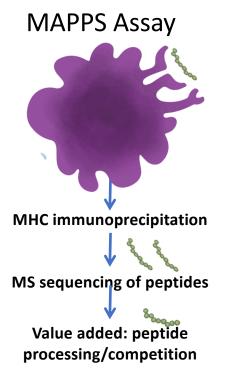
ORIGINAL Peptide (Overlapping 15-mer from Hamze, et al. EpiMatrix Cluster Detail Report DU26 E0 Cluster 26

	RH36-50 Cluster: 36										
Frame	AA Saguanaa	Frame	Hydro-	DRB1*0101	DRB1*0401	DRB1*0701	DRB1*1101	DRB1*1501			
Start	AA Sequence	Stop	phobicity	Z-Score	Z-Score	Z-Score	Z-Score	Z-Score			
36	WVKQTPGRG	44	-1.3	2.26	1.93	1.24	2.31	1.22			
37	VKQTE RGL	45	-0.78	1.89	0.82	1.9	0.56	1.33			
38	KQTPCRGLE	46	-1.63	-1.45	-1.83	-1	-0.9	-0.61			
39	QTPG GLEW	47	-1.3	-0.3	-0.29	0.22	-1.07	-0.45			
40	TPGFGLEWI	48	-0.41	-1.98	-2.91	-1.66	-1.94	-1.72			
41	PGRSLEWIG	49	-0.38	-1.19	-1.31	-1.56	-0.44	-0.59			
42	GRCLEWIGA	50	0	-0.14	0.11	0.3	-0.04	0.34			
	Summarized	Result	s	DRB1*0101	DRB1*0401	DRB1*0701	DRB1*1101	DRB1*1501			
	Mi ximum Sin	gle Z sco	ore	2.26	1.93	1.9	2.31	1.33			
	Publication	Result	s	В	NB	NB	NB	NB			
E	pi y ax Binding D	ata IC50) (nM)	1237	32143	TBD	1424	TBD			
	EpiVax Ass	essmen	t	В	B		В				
					X						

In original publication, the HLA DR binding motifs are located at flanks of the peptide. Binding results do not correlate with predictions.

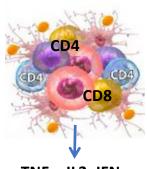
(1) More sensitive HLA binding assay (7 point binding assessment) confirms two more HLAbinding correlations ("B") in original peptide as tested, than original one point binding assay as performed by Hamze et al.

OPTIMIZED Peptide (Centered Motif) EpiMatrix Cluster Detail Report


			RH36	6-50MOE	D Cluster	: 33						
Frame		Frame	Hydro-	DRB1*0101	DRB1*0401	DRB1*0701	DRB1*1101	DRB1*1501				
Start	AA Sequence	Stop	phobicity	Z-Score	Z-Score	Z-Score	Z-Score	Z-Score				
33	<u>NMH</u> WVKQTP	41	-0.27	-1.53	-0.52	-1.08	-0.07	-0.55				
34	MHWVKQTPG	42	-0.19	1.07	0.48	0.26	0.36	0.71				
35	HWVKQTPGR	43	-0.35	-0.64	-0.52	-1.05	-0.11	-1.02				
3.6	WVKQTPGRG	44	-1.3	2.26	1.93	1.24	2.31	1.22				
37	VKQTPCRGL	45	-0.78	1.89	0.82	1.9	0.56	1.33				
38	KQTPGRGL	46	-0.35	-1.45	-1.83	-1	-0.9	-0.61				
39	QTPGRGL <mark>EW</mark>	47	-0.28	-0.3	-0.29	0.22	-1.07	-0.45				
40	TPGRGLEWI	40	-0.09	-1.98	-2.91	-1.66	-1.94	-1.72				
	Summarized	Result		DRB1*0101	DRB1*0401	DRB1*0701	DRB1*1101	DRB1*1501				
	Maximum Sing	le Z sco	ore	2.26	1.93	1.9	2.31	1.33				
	EpiVax Binding [)ata IC5	0 (nM)	192	4444	422	206	TBD				
								IBD				
	EpiVax Ass	essmer	nt	В	В	B	В					

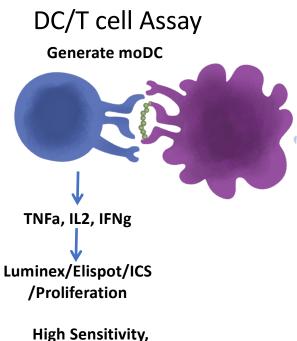
(2) Peptide is optimized (motif is centered). Predicted HLA DR binding motifs are centered in optimized version of Rituximab cluster.

(3) Repeat sensitive HLA binding assay. Using optimized version of Rituximab peptide, HLA binding assay performance improves and predicted binding affinities are validated (B).



T cell assays used by Industry

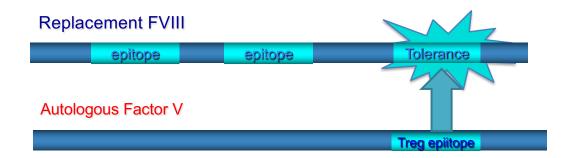
In vitro immunogenicity Protocol or "IVIP"


PBMC Assay - IVIP

TNFa, IL2, IFNg

Luminex/Elispot/ICS /Proliferation

Validation of immunogenicity/ high sample numbers;; low sensitivity for primary responses



Technically Complex

Factor V has a Tregitope (Amy Rosenberg/Bill Martin) Unpublished assays by Eduardo Guillen/Sandra Lelias

Other Autologous Proteins with Similar (Homologous) Epitopes may be Tolerogenic

We ask:

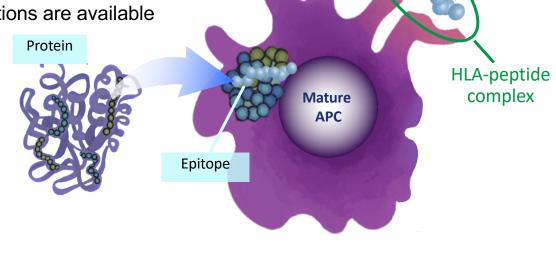
- Do Autologous T reg epitopes (in FV) regulate immune response to FVIII?
- Could these autologous Treg epitopes be used to induce FVIII-specific tolerance?
- We think YES

- Defining T cell Epitopes In Silico Yes, We Can.
- Comprehensive Immunogenicity Risk Assessment (Includes In Vitro)
- Cutting Edge Tools: The two-faced T cell epitope and Tregitopes
- Immune Engineering Immunogenicity and Tolerance

Enhance immunogenicity by engineering proteins that

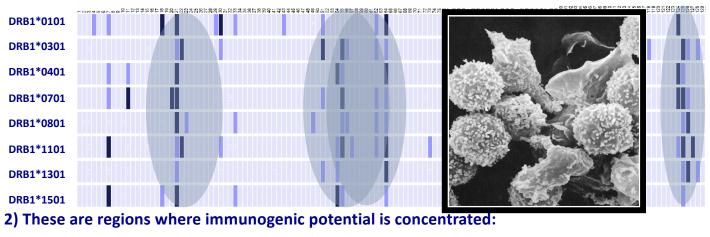
 Induce good (T) memories – add epitopes that induce CD4+ T cell memory responses to augment antibody and cellular responses.

Engineer **in** effector T cell epitopes


 Recall no bad (Treg) memories – remove epitopes that induce CD4+ Treg responses that suppress protective antibody and cellular responses.

Engineer out regulatory T cell epitopes

EpiMatrix – T cell Epitope Prediction Identifying Putative T cell Epitopes in peptides and proteins



- EpiVax uses EpiMatrix to predict T cell epitopes
 - Matrix-based prediction algorithm
- EpiVax predicts both class I and class II HLA binding
 - HLA binding is a prerequisite for immunogenicity
 - Full suite of HLA-based predictions are available

Regions of Epitope Clustering: ClustiMer Maximum impact with few AA changes

1) Identify regions where "positive scores" cluster across alleles

Strong bands suggest binding across all "pockets": Promiscuous epitopes

-								ine E		neeri	ng			EpiVax
036 0	pullviau		reues	agn po	Jieni	lany m	innunue	enic ciu	SLETS		•			
														r
		Ac	cessi	on [.] Fl	∪-на	- Seal	ience: F	OSTON	-2025 -	Cluster:	254			
		/ (0		011. T L				(Epx Ver. 1		oractor.		EIMMUN	NIZE	
			A C D	Click	k to Print	Save Deimr	nunized Seque	nce Back to S	ummary Repo	<u>rt</u>				
			E F			ORIC	GINAL SEQ	UENCE						
254	4 255	256	G H	258	259	260	261 26	2 263	264 2	65 266	267	268 269		
Р	R	G	ĸ	E.	Κ	1.1	R	r G	ĸ	т т	1	M R		
0	4.72	0	M	15.79	15.94	12.99	16.69 3.	71 2.98	12.23 3	3.32 3.32	4.63	1.78 1.72	2	
			P Q			MOE	IFIED SEQ							
254	4 255	256	RS	258	259	260	261 26	2 263	264 2	265 266	267	268 269		
Р	R	G	TV	F	Κ	1.1	R	r G	K	т т	1	M R		
0	4.72	0	W Y	15.79	15.94	12.99	16.69 3.	71 2.98	12.23 3	3.32 3.32	4.63	1.78 1.72	2	
P	• R •	G 💌	Y 🔽	F 🛩	К 💌	I 🗸		✓ G ✓		T 🗸		M 🚩 R 🖻		
	h amino acid is	keyed to its	s EpiMatrix	score. High	er scoring	amino acids	are represente	d larger, indicatii	ng that they are	and frames. In thi more "sensitive"	than lower sco	ring amino acids		
	<u>S</u>	how Sug	gested (Substitutio	ons Sho	WISPRI C	luster Repor	Show ISPR	I Blast Sum	<u>mary Best Sir</u>	ngle Change			
Frame Start	AA Sequenc	e Frame Stop			1*0101 core	DRB1*0301 Z-Score	DRB1*040 ² Z-Score	DRB1*0701 Z-Score	DRB1*080 Z-Score	1 DRB1*1101 Z-Score	DRB1*1301 Z-Score	DRB1*1501 Z-Score	Hits	
254 255	<u>PRG</u> YFKIRT <u>RG</u> YFKIRTG		-0.23 -0.2										0	
256 257	GYFKIRTGK		-0.19 -0.9		.38		2.41	2.51	1.4	2.2				
257	FKIRTGKT		-0.9		.38 .41		2.41	2.51	1.4	1.32				
259	KIRTGKTT <u>I</u>		-0.14	4		4.07	1.46				1.4		0	
260 261	IRTGKTT <u>IM</u> RTGKTT <u>IMB</u>		0 -0.21	1		1.97	1.42				1.48 1.33		1	
Summar	ized Results	(25-SEP-	-2009)	DRB	1*0101	DRB1*0301	DRB1*040*	DRB1*0701	DRB1*080	1 DRB1*1101	DRB1*1301	DRB1*1501	Total	
	num Single Z				.41	1.97	2.41	2.51	1.69	2.2	1.48	1.98		
	of Significant t of Significan		s		.79 2	1.97 1	2.41 1	4.64 2	1.69 1	2.2 1	0	1.98 1	19.68 9	
Tota	I Assessmer	nts Perfor	rmed: 64		_	city: -0.84	Epi	Matrix Score:	13.08	EpiMa	trix Score (w	/o flanks): 16.	.05	
Sco	ores Adjuste	d for Tree	gitope:				Epi	Matrix Score:	13.08	EpiMa	trix Score (w	/o flanks): 16.	.05	

See Deimmunization Effects on Epitopes in Real Time

T effector Epitopes can be Taken out – and Treg epitopes can be Introduced

254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269
Р	R	G	Υ	F	Κ	1	R	т	G	Κ	т	т	Т	М	R
0	4.72	0	11.92	15.79	15.94	12.99	16.69 DIFIED \$	3.71	2.98	12.23	3.32	3.32	4.63	1.78	1.72
254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269
-				_											
Р	R	G	Α	F	Κ		R	т	G	K	т	т	I.	М	R

The number below each amino acid indicates that residue's relative impact on EpiMatrix scores averaged across all alleles and frames. In this Logo Report the size and color of each amino acid is keyed to its EpiMatrix score. Higher scoring amino acids are represented larger, indicating that they are more "sensitive" than lower scoring amino acids.
<u>Show Suggested Substitutions</u> <u>Show ISPRI Cluster Report</u> <u>Show ISPRI Blast Summary Best Single Change</u>

Frame Start	AA Sequence	Frame Stop	Hydro- phobicity	DRB1*0101 Z-Score	DRB1*0301 Z-Score	DRB1*0401 Z-Score	DRB1*0701 Z-Score	DRB1*0801 Z-Score	DRB1*1101 Z-Score	DRB1*1301 Z-Score	DRB1*1501 Z-Score	Hits
254	PRGAFKIRT	262	-0.15									0
255	RG AFKIRTG	263	-0.13								4	0
256	<u>G</u> AFKIRTGK	264	-0.11									0
257	AFKIRTGKT	265	-0.56									
258	FKIRTGKTT	266	-0.83	2.41			2.13	1.69	1.32			
259	KIRTGKTT <u>I</u>	267	-0.14							1.44		
260	IRTGKTT <u>IM</u>	268	0		1.97	1.42				1.48		1
261	RTGKTT <u>IMR</u>	269	-0.21							1.33		0

Summarized Results (25-SEP-2009)	DRB1*0101	DRB1*0301	DRB1*0401	DRB1*0701	DRB1*0801	DRB1*1101	DRB1*1301	DRB1*1501	Total
Maximum Single Z score	2.41	1.97	1.42	2.13	1.69	1.32	1.48	1.53	
Sum of Significant Z scores	2.41	1.97	0	2.13	1.69	0	0	0	8.2
Count of Significant Z Scores	1	1	0	1	1	0	0	0	4
Total Assessments Performed: 64	Hydrophob	oicity: -0.64	Epi	Matrix Score:	atrix Score (w/o flanks): 4.57				
Scores Adjusted for Tregitope:			Epi	Matrix Score:	1.6	EpiMatrix Score (w/o flanks): 4.57			

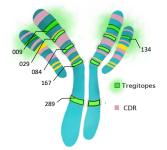
2014 FDA Guideline: Treg epitopes

Additional advanced analyses of primary sequence are also likely to detect HLA class II binding epitopes in nonpolymorphic human proteins. Such epitopes may elicit and activate regulatory Tcells, which enforce self-tolerance, or, opposingly, could activate T-helper (Th) cells when immune tolerance to the endogenous protein is not robust (Barbosa and Celis 2007; Tatarewicz et al. 2007; De Groot et al. 2008; Weber et al. 2009). However, if considered appropriate, engineering of changes to the primary sequence to eliminate immunogenic Th cell epitopes or addition of tolerogenic T-cell epitopes should be done cautiously, because these modifications may alter critical product quality attributes such as aggregation, deamidation, and oxidation and thus alter product stability and immunogenicity. Therefore, extensive evaluation and testing of

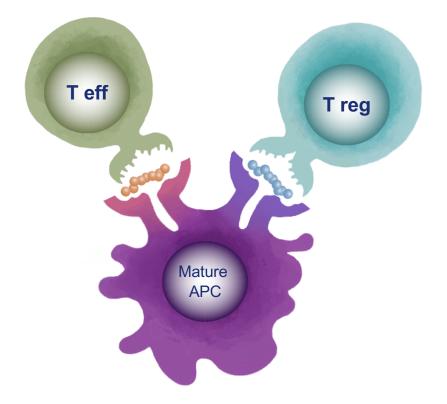
References are to work done by EpiVax Group

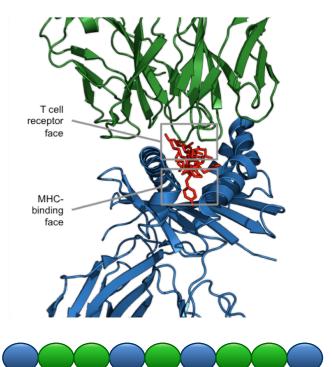
OptiMatrix – Tolerization Function

Maintaining or Introduce Existing Tregitopes*


According to regulatory guidelines, when de-immunzing monoclonal antibodies, the removal of regulatory T cell epitopes, **Tregitopes**, should be avoided.

If the original sequence contains a Tregitope, then OptiMatrix attempts to deimmunize the sequence **without interfering** with the Tregitopes


Example: List of deimmunization options will try to remove the epitopes in frames 11 and 20 by changes made to L11, Y27, or T28 below (residues that don't overlap with the Tregitopes).


						EpiMat	rix Cluster Deta	ail Report					-
	Frame Start	AA Sequence	Frame Stop	Hydro- phobicity	DRB1*0101 Z-Score	DRB1*0301 Z-Score	DRB1*0401 Z-Score	DRB1*0701 Z-Score	DRB1*0801 Z-Score	DRB1*1101 Z-Score	DRB1*1301 Z-Score	DRB1*1501 Z-Score	Hit
Point Mutations for Deimmunization	9	GGLVQPGGS	17	0.01	0.20	0.18	-0.03	0.14	-0.11	0.41	-0.70	0.36	0
	10	GLVQPGGSL	18	0.11	0.76	-0.07	-0.22	0.44	-0.36	-0.32	-0.43	0.48	0
T28R (-10.61) ^	11	LVQPGGSLR	19	0.01	0.82	1.22	0.78	0.35	0.51	-0.15	1.75	1.04	1
T28G (-10.61)	12	VQPGGSLRL	20	0.07	1.49	1.56	1.45	1.88	0.45	0.82	1.23	2.24	2
T28K (-10.61)	13	QPGGSLRLS	21	-0.49	-1.18	-0.51	-0.92	-1.74	-0.87	0.08	-1.41	-0.77	0
T28E (-10.61)	14	PGGSLRLSC	22	0.18	-0.10	-0.09	-1.01	0.10	-0.37	0.09	-0.27	0.14	0
T28D (-10 22)	15	GGSLRLSCA	23	0.56	-0.30	-0.07	-0.21	-0.49	0.03	0.49	0.06	0.32	0
T28C (10.61)	16	GSLRLSCAA	24	0.80	0.39	-1.42	-0.77	0.57	-0.72	0.19	-0.45	0.05	0
T28A (-10.01)	17	SLRLSCAAS	25	0.76	0.58	0.34	1.64	-0.45	0.80	1.35	0.78	0.09	0
Y27W (-10.61)	18	LRLSCAASG	26	0.80	2.44	2.45	2.40	1.32	2.15	2.51	2.29	1.84	7
T28M (-10.61)	19	PLSCAASGV	27	0.23	-0.28	0.67	0.09	-0.75	0.03	-0.90	0.71	0.04	0
T28N (-10.61) -	20	LSCAASGYT	28	0.66	1.07	0.43	0.83	1.65	0.59	0.38	-0.67	1.71	2
Accept Cancel	21	SCAASGYTE	29	0.12	-0.08	0.13	0.31	0.31	-0.27	-0.42	-0.02	0.20	0
Accept	22	CAASGYT	30	0.12	0.11	-1.42	-0.90	0.14	-1.62	-1.61	-1.72	-0.46	0
	23	AASGYT	31	-0.02	-0.30	-0.96	-0.75	-0.79	-0.99	-0.68	-1.45	0.11	0

JanusMatrix to find Treg/Tolerated epitopes

DeFT re-engineering of Alpha Interferon Remove Epitopes But Preserve Funcation

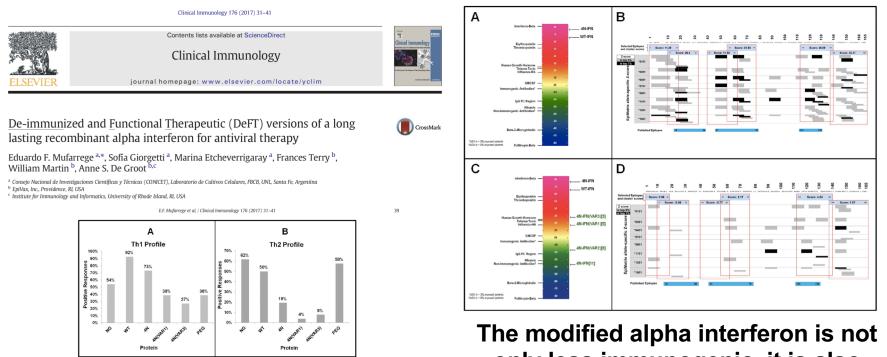
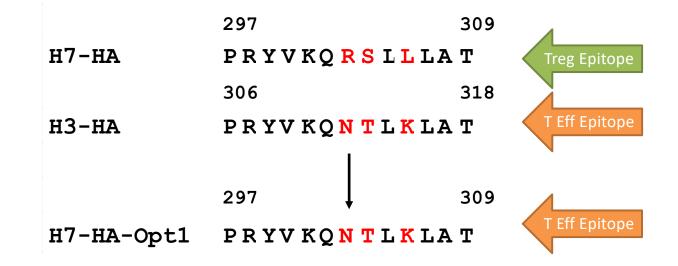
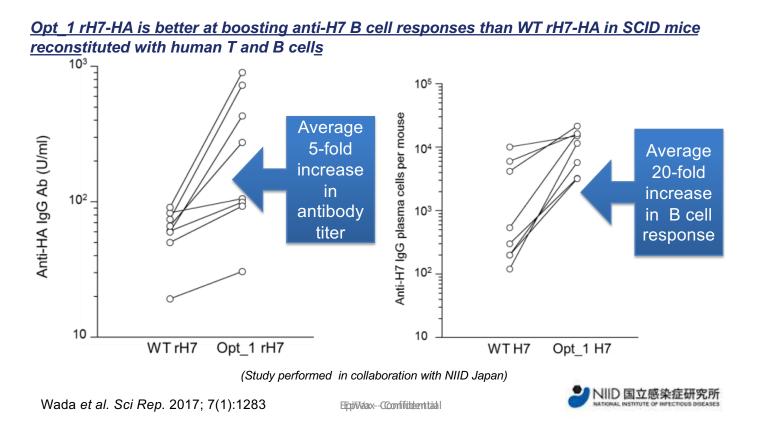



Fig. 6.4/wFIA de-immunized variants showed a market reduced immungenicity in comparison with other TRV versions. 6 xtvio cytokine concertation (PR-v) (A) and II-4(B)) from protein challenged individual set aratio of the cytokine concertation (PR-v) (A) and II-4(B)) from protein challenged set arabic showed by cytokine concertation (PR-v) (A) and II-4(B) from protein challenged set arabic showed by cytokine concertation (PR-v) (A) and II-4(B) from protein challenged set arabic showed by cytokine concertation (PR-v) (A) and II-4(B) from protein challenged set arabic showed by cytokine concertation from exciptent treated samples A generative market showed as a ratio (A) of the SI was then calculated and a positive domous defined where a software showed set are showed by the strength set are showed by the strength set are showed by the strength set are showed by the set of the cytokine concertance of the cytokine concertain concerta

only less immunogenic, it is also still functional.

Immune Engineering Vaccines – Avian Flu Treg epitope discovered – 3 Amino Acids Modified



simultaneous Treg epitope knock-out and Teff epitope knock-in

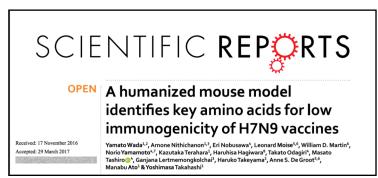
Epitope-Enhanced H7 HA Antigenicity "Opt_1 rH7 HA" Optimized with 3 AA changes – Tested in mice by NIID

66

Remove Treg Epitopes and Make Better Vaccines H7N9 (Avian Flu) example

RESEARCH PAPER

Human Vaccines & Immunotherapeutics 11:9, 2241–2252; September 2015; Published with license by Taylor & Francis Group, LLC

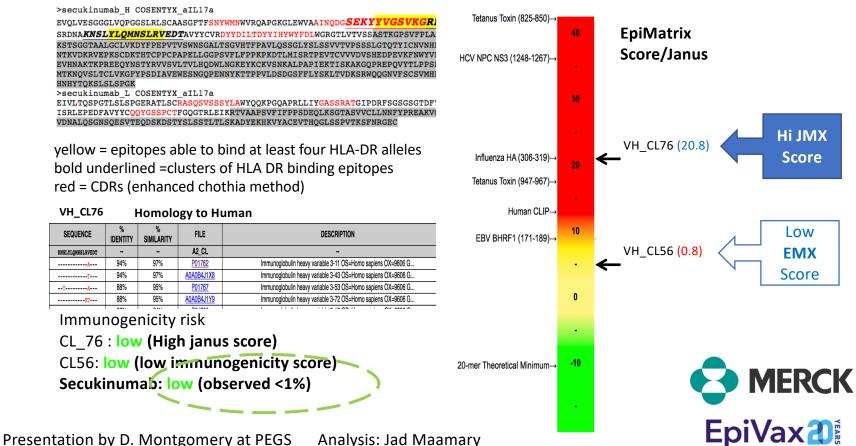

H7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated tolerance

Rui Liu¹, Leonard Moise^{1,2}, Ryan Tassone¹, Andres H Gutierrez¹, Frances E Terry², Kotou Sangare³, Matthew T Ardito², William D Martin², and Anne S De Groot^{1,2,#}

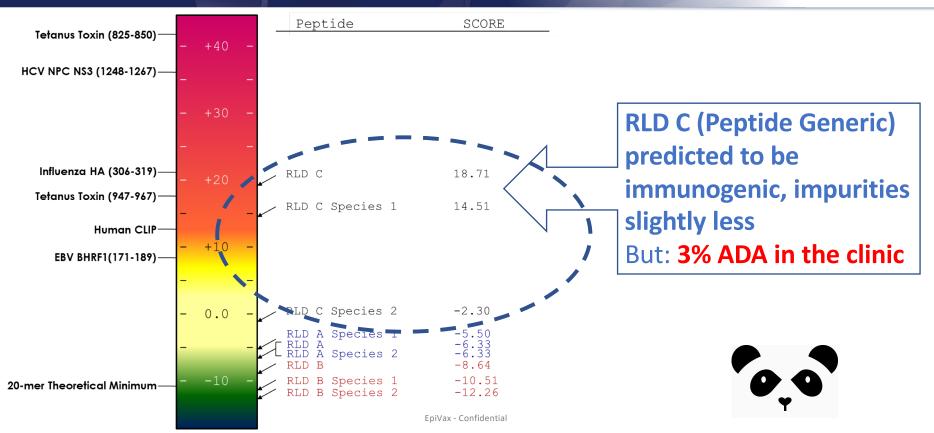
¹Institute for Immunology and Informatics; University of Rhode Island; Providence, RI USA; ²EpiVax Inc; Providence, RI USA; ³Laboratory of Applied Molecular Biology (LBMA); University of Bamako; Bamako, Mali

Identify potential regions where epitopes can be improved Remove Treg Epitopes

Result: 20-Fold More Immunogenic



Wada et al. Sci Rep. 2017; 7(1):1283



EpiMatrix, ClustiMer and JanusMatrix put to use in a recent study by Diane Montgomery of Merck

secukinumab (COSENTYX) anti-IL17A: in silico

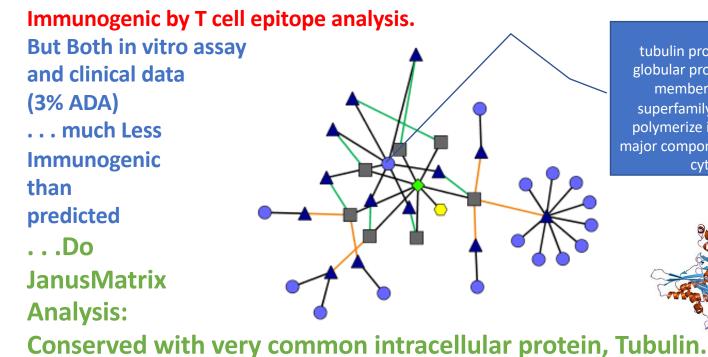
PANDA: In Silico Screening Example Peptide RLDs – Peptide Impurities

EpiVax

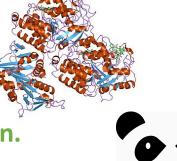
In Vitro Immunogenicity: IFNγ Fluorospot for RLD C / Peptide Generic

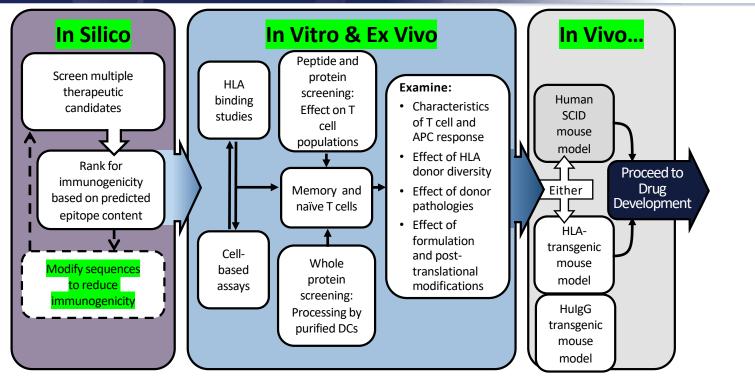
Much Less Immunogenic Than Predicted

....Do JanusMatrix Analysis


		nai y		INY I	luon	Japo	1155	pone	55 a	005	5 00	1015	
	DONOR	1	2	3	4	5	6	7	8	9	10		
	DRB1 Allele		01:02	04:01	07:01	01:01	07:01	01:01	11:01	04:04	01:01	TOTAL # of	
			04:02	13:02	11:01	03:01	13:01	04:04	11:04	11:03	04:04	Positive	
	EpiMatrix Hits: Allele		1	1	3	2	3	2	4	1	2	Responses*	
	Epimatrix mits. Allele	3	2	2	4	1	2	1	4	4	1		
	1	-	-	+	-	-	+	-	+	-	-	3/10	
	2	-	-	-	-	-	-	-	-	-	-	0/10	
RLD	3	-	-	-	-	-	-	-	-	-	-	0/10	
	4	-	-	-	-	-	-	-	-	-	+	1/10	
	5	-	-	-	+	-	-	-	-	-	-	1/10	

PLDC Summary of IEN/ Eluorospot responses across donors


JanusMatrix Analysis of Generic Peptide

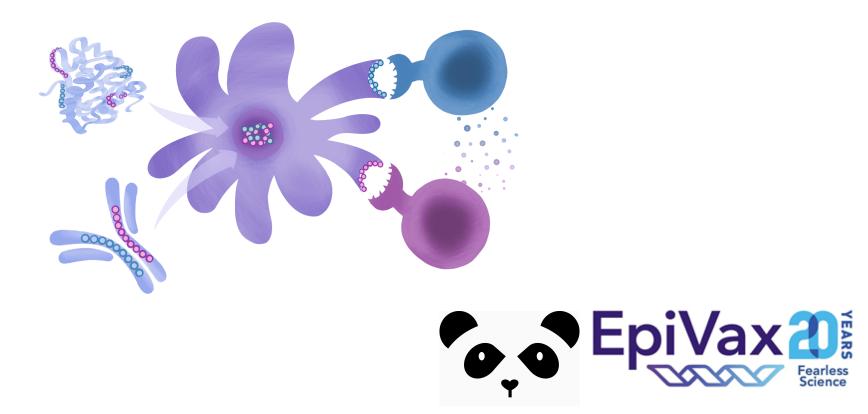

Tubulin

tubulin protein superfamily of globular proteins, or one of the member proteins of that superfamily. α - and β -tubulins polymerize into microtubules, a major component of the eukaryotic cytoskeleton.

Immune Engineering Utilizes Many Platforms

<u>T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation.</u> Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. Clin Immunol. 2013 Dec;149(3):534-55. doi:10.1016/j.clim.2013.09.006. Epub 2013 Sep 25. Review. PMID: 24263283

- Defining T cell Epitopes In Silico Yes, we can.
- Comprehensive Immunogenicity Risk Assessment includes In Vitro
- Defining Tregs In Silico? Yes, we can.
- Immune Engineering Immunogenicity and Tolerance? Yes, we can.
- Peptides (and their impurities) play by the same rules.
- Personalizing Immunogenicity Risk ? Yes, we can.
- Can we immune-engineer? Yes, we can.
- Be attentive to potential Treg epitopes!


ISPRI: Developed for Biologics

- **ISPRI** is EpiVax's integrated **in silico toolkit** for prediction, analysis and reduction of T cell immunogenicity of protein therapeutics
- Predictions reduce laboratory work (typically at least 20-fold) and focus development on critical protein regions
- In silico immunogenicity screening helps researchers save time, money and effort by providing actionable data on protein immunogenicity

