The ABIRISK integrated approach to identify and evaluate predictive markers of immunogenicity

Sophie Tourdot, PhD BioMedicine Design

"Predictive immunogenicity for better clinical outcomes" Sliver Spring, 2018

KI **Anti-Biopharmaceutical Immunization: Prediction and analysis** of clinical relevance to minimize the Risk

1

A European IMI-funded project

Public Private Partnership innovative medicines initiative

37 partners 9 EFPIA companies 25 academic institutes 3 SMEs

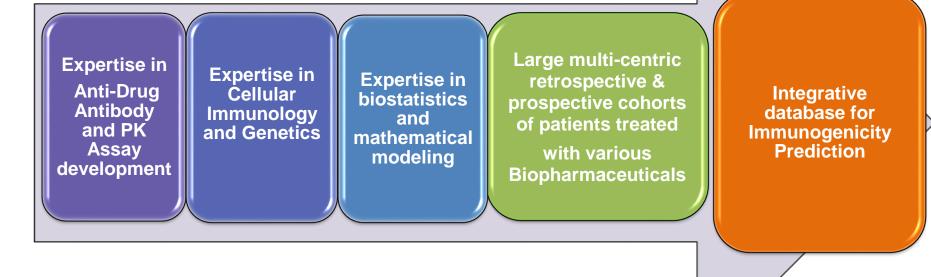
ORLDWIDE RESEARCH & DEV

BioMedicine Design

Project Coordinator

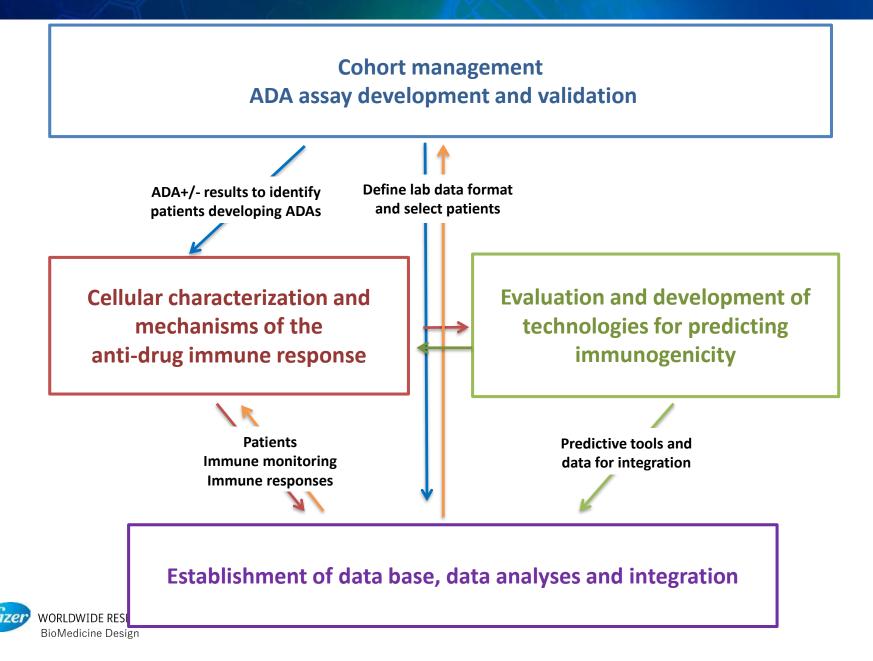
Sebastian Spindeldreher, Novartis Dan Sikkema, GSK (2012-2016)

IMI JU Managing Entity


Marc Pallardy, INSERM

6 YEARS March 2012- February 2018 Total budget €34.9 million

¹*EFPIA*= European Federation of Pharmaceutical Industries and Associations



ABIRISK - Assets and driving force

- Haemophilia (HA) : Factor VIII
- Multiple Sclerosis (MS) :IFNβ, Natalizumab
- Systemic Lupus Erythematosus (SLE) : Rituximab
- Inflammatory Bowel Disease (IBD): Infliximab, Adalimumab
- Adult and Juvenile Rheumatoid Arthritis (RA): Infliximab, Adalimumab, Rituximab, Etanercept, Tocilizumab

ABIRISK work packages & workflow

Describe the natural history of anti-drugs antibodies (ADA) occurrence using validated and harmonized assays

Identify disease-specific and drug-specific **biomarkers associated** with immunogenicity, including markers of prediction

Provide insight into the basic mechanisms by which therapeutic proteins drive immune cell activation

Evaluate existing and new tools for **immunogenicity risk assessment**, including animal models

Develop mathematical models to predict :

the occurrence of ADA

the occurrence or absence of subsequent clinical outcomes

Describe the natural history of anti-drugs antibodies (ADA) occurrence using **validated and harmonized assays**

Identify disease-specific and drug-specific biomarkers associated with immunogenicity, including markers of prediction

Provide insight into the basic mechanisms by which therapeutic proteins drive immune cell activation

Evaluate existing and new tools for **immunogenicity risk** assessment, including animal models

Develop mathematical **models** to **predict** : the occurrence of ADA the occurrence or absence of subsequent clinical outcomes

Assay harmonization

Organization

Validated Assays

Biological Product	ADA Assay	PK Assay
Adalimumab	\checkmark	\checkmark
Infliximab	\checkmark	\checkmark
Etanercept	\checkmark	\checkmark
Rituximab	\checkmark	\checkmark
Natalizumab	\checkmark	\checkmark
IFNβ 1-a, 1-b	\checkmark	-
FVIII	\checkmark	-

Human Positive Controls

sa01.54

sa01.71

Biop

(IFNβ 1-a, Rebif[®])

			0	ganization	
Targeted opharmaceutical	Monoclonal Antibody	Type (Bab/Nab*)	Isotype		
Rituximab	RXA1 RXA3 RXA10	Nab Nab Nab	lgG1 lgG2 lgG1	к к к	
Natalizumab	NAA32 NAA80 NAA84 NAA96	Non-NAb Nab Nab Non-NAb	lgG1 lgG1 lgG1 lgG3	κ λ λ λ	
Infliximab	INA29 INA62 INA79 INA85	Nab Nab Nab Nab	lgG1 lgG4 lgG4 lgG4	κ κ κ	
Adalimumab	ADA19 ADA23 ADA44 ADA39	Nab Nab Nab Nab	lgG1 lgG1 lgG1 lgG1 lgG1	κ λ κ κ	
Interferon-β	sa01.53	Nab	lgG2	k	

Nab

Nab

lgG4

lgG1

k

λ

Describe **the natural history** of anti-drugs antibodies (ADA) occurrence using **validated and harmonized assays**

Identify disease-specific and drug-specific **biomarkers associated** with immunogenicity, including markers of prediction

Provide insight into the basic mechanisms by which therapeutic proteins drive immune cell activation

Evaluate existing and new tools for **immunogenicity risk** assessment, including animal models

Develop mathematical **models** to **predict** : the occurrence of ADA the occurrence or absence of subsequent clinical outcomes

Patient/treatment associated risk factors – Hemophilia A

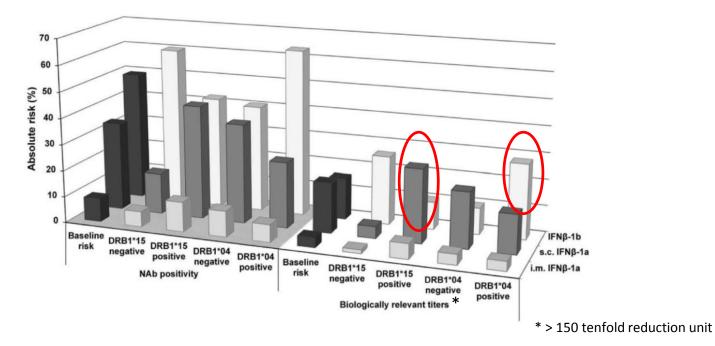
Microsatellite polymorphism promoter at the HMOX1 is associated risk of ADA development to FVIII in severe hemophilia patients

Heme oxygenase HO-1 is inducible under inflammatory conditions Induction of HO-1 before FVIII treatment protect against inhibitor development in FVIII deficient mice

Genotype frequencies at the polymorphic locus.

Patients with severe hemophilia A								
Genotype	Inhibitor-positive N. (%)	Inhibitor-negative N. (%)	OR	95% CI	Р	aOR	95% CI	Р
L/L+L/M+L/S	31 (31.3)	45 (17.1)	2.21	1.30-3.76	0.004	2.13	1.24 - 3.64	0.006
S/S+M/S+M/M	68 (68.7)	218 (82.9)						

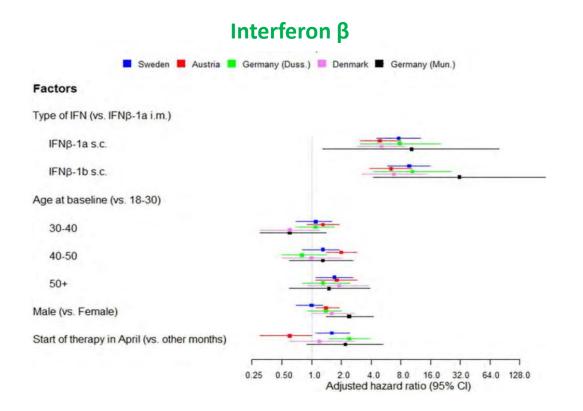
S, M, L stand for short (<21 GT repeats), medium and long (\geq 30 GT repeats), respectively. P values were assessed by the two-tailed Fisher's exact test; aOR: odds ratio adjusted on hemophilia-causing mutations; CI: confidence interval.


Class L allele (>= 30 GT repeat) subclass genotype is associated with increased inhibitor development in severe hemophilia A patients treated with FVIII

Repessé et al. 2013

Patient/treatment associated risk factors – Multiple sclerosis

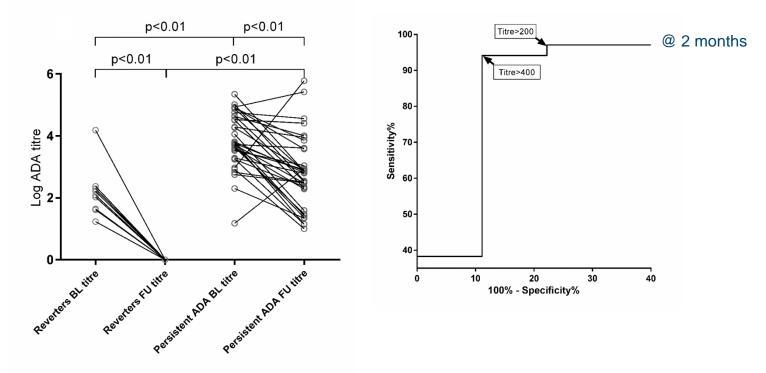
HLA carriage and IFNβ products are associated with increased risk of ADA development in MS patients


- HLA DRB1*15 carriage is associated with a higher risk of ADA development against IFNβ-1a i.m. and s.c.
- HLA DRB1*04 carriage is associated with a higher risk of ADA development against IFNβ-1b
- Choice of INFβ preparation remains the most significant determinant

WORLDWIDE RESEARCH & DEVELOPMENT BioMedicine Design

Link et al. 2014

Patient/treatment associated risk factors – Multiple sclerosis


Product, sex, age at start of treatment are associated with increased risk of ADA development in MS patients

- Higher risk of NAb development associated with INFβ-1a and -1b s.c.
- Higher risk of NAb development associated with being Male and aged over 50 at start of treatment
 Bachelet et al. 2016

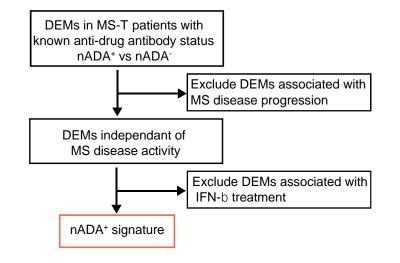
Predictive biomarkers - NAbs titers

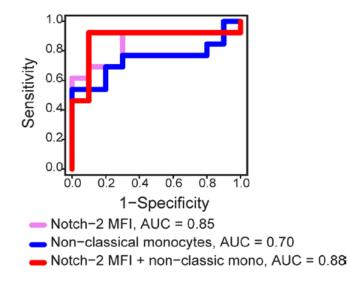
High NAbs titers at 2 months predict persistence of response to Natalizumab in MS patients

Current recommendation : 2 consecutive low titer > discontinue ABIRISK recommendation : 1 high titer before 3 months > discontinue

Deisenhammer et al. 2018

Predictive biomarkers – PBMC immunosignature in MS


Decreased macrophage NOTCH2 expression and increased frequency of pro-inflammatory macrophages predict NAbs development to INFβ in MS patients



LEGENDScreen TM

High through-put immunophenotyping platform

cell surface markers

DEM : differentially expressed markers

Adriani et al. 2017

Describe **the natural history** of anti-drugs antibodies (ADA) occurrence using **validated and harmonized assays**

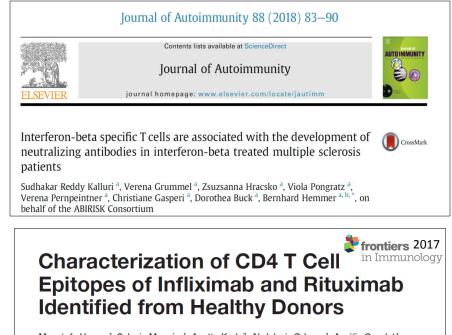
Identify disease-specific and drug-specific biomarkers associated with immunogenicity, including markers of prediction

Provide insight into the basic mechanisms by which therapeutic proteins drive immune cell activation

Evaluate existing and new tools for **immunogenicity risk** assessment, including animal models

Develop mathematical **models** to **predict** : the occurrence of ADA the occurrence or absence of subsequent clinical outcomes

Cellular responses associated with ADA⁺ status - 1


IL-10–Producing Infliximab-Specific T Cells Regulate the Antidrug T Cell Response in Exposed Patients

Alessandra Vultaggio,* Francesca Nencini,[†] Sara Pratesi,[†] Daniele Cammelli,* Maria Totaro,* Sergio Romagnani,[†] Enrico Maggi,[†] and Andrea Matucci* on behalf of the ABIRISK Consortium

The Journal of Immunology, 2017, 199: 1283-1289.

Clinical & Experimental Immunology The Journal of Translational Immunology		
Clinical and Experimental Immunology	ORIGINAL ARTICLE	doi:10.1111/cei.12858
-	iximab are detectable mainly -drug antibodies and hypers	

Vultaggio et al., 2016

Moustafa Hamze¹, Sylvain Meunier¹, Anette Karle², Abdelaziz Gdoura¹, Amélie Goudet¹, Natacha Szely³, Marc Pallardy³, Franck Carbonnel⁴, Sebastian Spindeldreher², Xavier Mariette⁵, Corinne Miceli-Richard⁵ and Bernard Maillère^{1*}

Antigen-specific CD4 T cells are associated with ADA development
 CD4 T cell cytokine profiles are diverse
 No difference in Tregs numbers observed so far

Cellular responses associated with ADA⁺ status - 2

(Some) On-going/Unpublished work

- Identification of a peripheral B cell immune signature predictive of ADA development in RA patients
- Development of a highly reproducible, sensitive method for early detection and characterization of antidrug T and B cell responses using RNA-seq :
 - NGS-based BCR analysis allows detection of BCR clonal repertoires in samples with undetectable B cells (<0.01 x109 cell/L, flow cytometry)
 - Peak levels of drug-specific T-cells are detected in blood of patients before the detection of anti-drug antibodies
 - The technology can be combined with T cell assay to identify epitope- specific T cells
- Pilot study in untreated, ADA+, ADA- and healthy controls reveals different T follicular helper cell populations in the 4 groups
- Pilot study in RA ADA+, ADA- patients identifies a subpopulation of CD24^{hi}CD38^{hi} IL-10 producing B cells

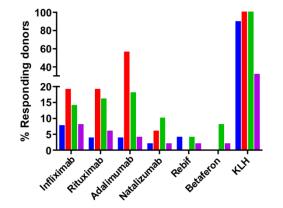
Describe **the natural history** of anti-drugs antibodies (ADA) occurrence using **validated and harmonized assays**

Identify disease-specific and drug-specific **biomarkers associated** with immunogenicity, including markers of prediction

Provide insight into the basic mechanisms by which therapeutic proteins drive immune cell activation

Evaluate existing and new tools for **immunogenicity risk assessment**, including animal models

Develop mathematical **models** to **predict** : the occurrence of ADA the occurrence or absence of subsequent clinical outcomes



Evaluation of existing prediction tools - 1

Evaluation of in vitro T cell assays for immunogenicity risk assessment

Assays - not in same order as in graph

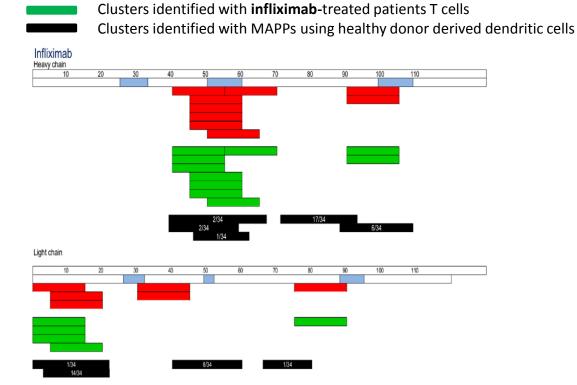
- EpiScreen[™] (Abzena)
- EpiBase[™] (Lonza)
- Immuno'line[™] (Platine)
- REVEAL® (Prolmmune)

	Infliximab	Rituximab	Adalimumab	Natalizumab	Betaferon	Rebif
Assay A	1	3	2	4	2	1
Assay B	3	2	1	4	N/A	N/A
Assay C	3	1	1	4	1	2
Assay D	1	2	3	4	1	1

Colour coding indicates ranking, from high to low *in vitro* immunogenicity

- Discrepancy between assays in their ranking of molecules
- Knowledge on the biology and mechanism of action of the drug is essential as they can interfere with assay

- One isolated assay cannot predict ADA incidence -



WORLDWIDE RESEARCH & DEVELOPMENT BioMedicine Design

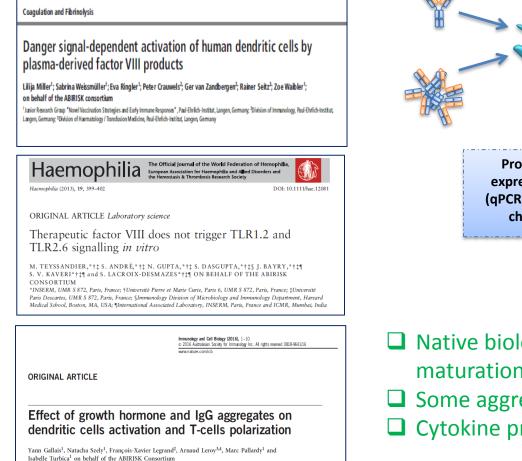
Evaluation of existing prediction tools - 2

Clusters identified with healthy donors T cells

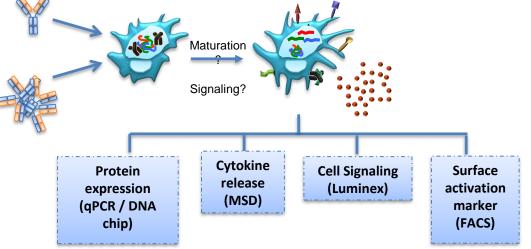
Evaluation of *in vitro* **assays for identification of immunogenic sequences**

An integrated use of *in silico* prediction, *in vitro* HLA binding, MAPPs and T cell assays identified

9 infliximab and 8 rituximab CD4 T cell epitopes


□ 2/3 of peptides identified in healthy donors **recall a T cell response in ADA+ patients**

Hamze et al. 2017


Development of novel prediction tools - 1

Comparison of DC activation readouts for danger signal evaluation

WORLDWIDE RESEARCH & DEVELOPMENT

BioMedicine Design

Adapted from S. Spindeldreher, Coral Gables 2016

- Native biologics alone do not induce detectable DC maturation
- Some aggregated forms give a danger signal
- Cytokine profiles are diverse

Development of novel prediction tools - 2

Whole systems analysis of risk

No surrogate readout of immunogenicity : ADA induced by the protein drugs are measured

- ABIRISK new hemophilic mice
- State of the art humanized mice (Axenis BRGSF™)
- Human Artificial Lymph nodes (ProBiogen)

Results obtained with KLH as a model antigen as pilot experiment or with therapeutic drugs were inconclusive

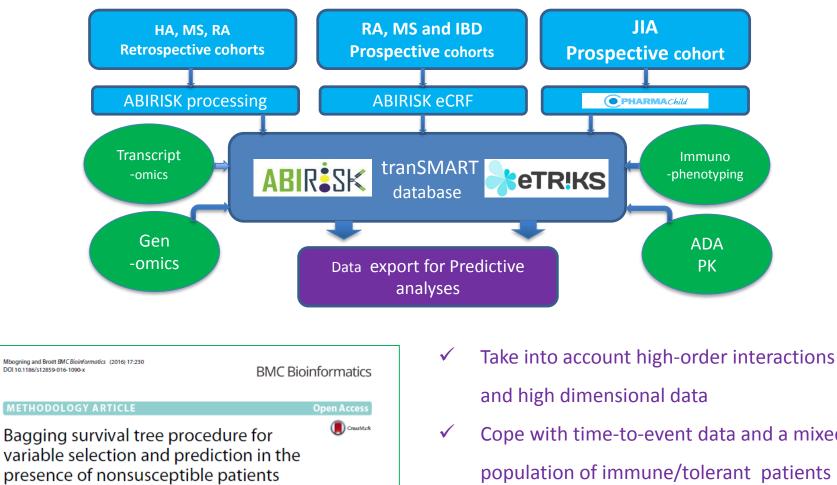
Further exploration is required to assess the value of these models for immunogenicity prediction of therapeutic proteins

Describe the natural history of anti-drugs antibodies (ADA) occurrence using **validated and harmonized assays**

Identify disease-specific and drug-specific biomarkers associated with immunogenicity, including markers of prediction

Provide insight into the basic mechanisms by which therapeutic proteins drive immune cell activation

Evaluate existing and new tools for **immunogenicity risk** assessment, including animal models


Develop mathematical models to predict :

the occurrence of ADA

the occurrence or absence of subsequent clinical outcomes

Database & statistical model

Cyprien Mbogning^{1,2*} and Philippe Broët^{1,2,3,4}

https://cran.r-project.org/web/packages Comprehensive R Archive Network Project

- Cope with time-to-event data and a mixed
 - population of immune/tolerant patients
- \checkmark Provide biomarker selection for prediction
- \checkmark Provide stable and accurate individual prediction

Summary

ABIRISK legacy as of today

- ADA Human Positive Controls
- Harmonized ADA assays
- Confidence in the use of healthy donors for *in vitro* risk assessment T cell assays
- Identification of markers associated with ADA development, including predictive markers
- Position paper on Terms and Definitions
- Database
- Biobank

Looking forward : on-going analyses

- Validation of the statistical model of ADA occurrence prediction
- Clinical relevance of pre-existing, transient, low titer non-neutralizing antibodies
- Immune mechanisms pertaining to ADA development
- Disease/Product-specific predictive markers of ADA development

- ...

Acknowledgment : ABIRISK consortium participants

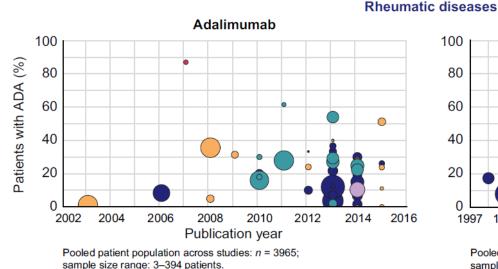
In particular

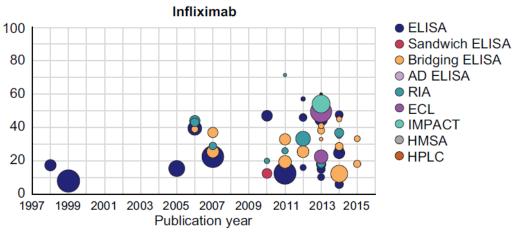
WD1		102		W/D2			
WP1	WP2			WP3		WP4	
 Florian Deisenhammer (IMU, AT) Mary Birchler (GSK, USA) Louis Christodoulou (UCB, GB) 	 Tim Hi (Pfizer) Claudi (UCL, 0) Vincer (Sanof) 	, USA) a Mauri GB) nt Mikol		 Bernard Maillère (CEA, FR) Sebastian Spindeldreher (Novartis, CH) Christian Ross Pedersen (NovoNordisk, DK) 		 Agnès Hincelin- Méry (Sanofi, FR) Philippe Broët (Inserm, FR) Pierre Dönnes (SciCross, SE) 	
WP5		Cohort leaders		Scientific Advisory Board			
 (Novartis, CH); Dan Sikkema (GSK, USA) Marc Pallardy (Inserm, FR) Riccardo Bertini (ALTA, IT) (AP-HI MARC PALLAR (AP-HI MARC PALLAR (AP-HI (AP-HI MARC PALLAR (AP-HI		(AP-HP, F • MS : An (KI, SE)	FR) nna Fogdell-Hahn • atthieu Allez •		 Amy Rosenberg (FDA, USA) Alessandro Sette (LJI,USA) Robin Thorpe (NIBSC, GB) 		

The **BIOPIA** initiative

Objectives

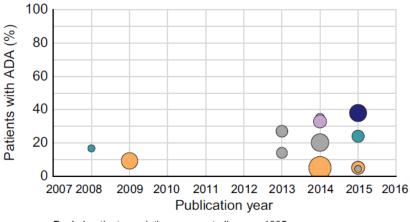
Raise awareness about biopharmaceuticals and their immunogenicity, with the aim of integrating testing of these factors in order to improve the care and overall health of patients

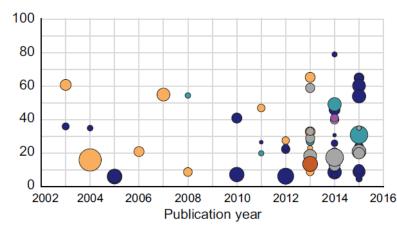

https://ki.se/en/cns/biopia


Means

- Provide easy, accessible information about ADA and drug level testing
- Create a site for clinicians to help them assess biologic responses in their patients and choose the correct treatment for each person
- Connect European labs together, with the goal of implementing routine, clinical testing for immunogenicity and drug levels

Contact : Anna Fogdell-Hahn - Anna.Fogdell-Hahn@ki.se


ADA incidence confounders: Assays and populations


Pooled patient population across studies: n = 4495; sample size range: 5–340 patients.

Crohn's disease/ulcerative colitis

Pooled patient population across studies: *n* = 1305; sample size range: 23–240 patients.

WORLDWIDE RESEARCH & DEVELOPMENT BioMedicine Design

Pooled patient population across studies: n = 7080; sample size range: 13–514 patients.

Gorovits et al 2018 Clin Exp Immunol

30