MHC binding and immunogenicity
of eluted ligands; benchmarking
and predictions



Outline

 The IEDB and naturally processed (eluted
ligand) data (and associated data standards)



The IEDB contains highly
granular information following
rigorous data standards
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Our vision for IEDB Integration with
the immunopeptidomic community

Mass Spectrometry
HLA Library
Databases

Integration with T
cell response and
MHC binding data
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Metadata and the IEDB

Proteomics. 2018 Jun; 18(12): 1800110. PMCID: PMCBO33177

FPublished online 2018 Jun 27. doi: 10.1002/pmic 201800110 PMIC: 29791771

Minimal Information About an Immuno-Peptidomics Experiment (MIAIPE)

Jennie R. Lill, T Pater A. van Veelen, 2 Stefan Tenzer, 3 Arie Admon, 4 Etienne Caron, S Joshua E. Elias, 8

Albert J.R. Heck, 7 Bﬂguel Marcilla, ? Fabio Marino, 19 11 Markus Miiller, 12 Bjoem Peters, 12 Anthony Purcell, 14

Alessandro Sette, 12+ 12 Theo Sturm, 7 + & Nicola Temette, 1% Juan Antonio Vizcaino, 17 and Michal Bassani-Sternberg
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Ligand origin at host, cellular and protein level

— |EDB utilizes taxonomy, cell-ontology and protein trees based on rigorous,
community derived and interoperable ontologies and nomenclatures

Information related to the biological process related to the experiment (e.g. infection,
transfection, pulse with exogenous protein)

Technical information related to the experiment, elution (MS, technique for
assignment, etc.)

HLA/MHC isolation classification and assighnment based on published, rigorous and
transparent MHC ontology standards

Separate records for each literature or submission origin



T cell and MHC binding data is mostly non-self
while elution data (NP) is mostly self

Unique epitopes

Total

Human

Rodent

Other hosts
Non-human primates

Self

Non-self
Viruses
Allergen
Bacteria
Parasites
Fungus

MHC
52,060

42,733
6,416
628
3,592

5,161

39,801
31,512
1,264
5,219
1,564
242

T cell
38,182

25,656
13,052
1,380
602

7,461

28,331
15,178
4,458
6,332
2,027
336

NP
141,331

126,078
15,679
157
0

139,413

1529
959
133
128
307

2

Vaughan K, Xu X, Caron E, Peters B, Sette A. Expert Rev Proteomics. 2017 Sep;14(9):729-736.



Exemplary studies starting to fill in
the gaps

e Croft, Purcell and La Gruta identified identified
21 influenza A virus (IAV)-derived peptides
presented by murine H-2 b class | complexes
following direct in vitro infection or cross-
presentation

* Cross-presented epitope abundance and
peptide-MHCI binding strength (IC 50 ) to be
the most powerful predictors of CTL response
magnitude.

Ting Wu et al, submitted



Conclusions ()

The IEDB, currently contains more than 320,000 elution data
(140,000 elution data in 2017)

Data resources integrating immunological metadata and NP data
will become available to the user community

Integration of NP data housed within the IEDB with SWATHAtlas
[HUPO-HIPP partner]

— ensure interoperability of data repositories to allow full access to all
NP data

— for linking peptidome data with immune reactivity data

Elution data is mostly derived from self-antigens and fewer ligands
from pathogens and allergens

— the overlap between NPs, T cell epitopes and MHC binding data is
poor

— as a result it is difficult to address correspondence



Outline

 The IEDB and naturally processed (eluted
ligand) data (and associated data standards)

* The need for global benchmarking (binding,
eluted ligands, T cell recognition)



First comprehensive benchmark of MHC

binding predictions with initiation of IEDB

- 48 MHC alleles, 88 datasets
- 48,828 IC, values
- 50 — 3000 data points per dataset

Results:
Training data volume >> method
AUC values > 0.9 for IEDB methods
NetMHC >SMM >> ARB

Allele iiﬂgfﬁ #1C50 Allele FL’ZEE‘S; #1C50 Allele izag?ﬁ #1C50 Allele 'Ezagfﬁ #1C50
HLA A*0101 9 1157 HLA A*3002 9 92 HLAB501 9 114 Mamu AL 8 383
HLA A*0101 10 56 HLAA*3101 9 1869 HLA B*5101 9 244  Mamu A*01 9 525
HLA A*0201 9 3089 HLA A*3101 10 1057 HLA B*5101 10 177 Mamu A*01 10 477
HLA A*0201 10 1316 HLA A*3301 9 1140 HLA B*5301 9 254 Mamu A*01 11 293
HLA A*0202 9 1447 HLA A*3301 10 1055 HLA B*5301 10 177 Mamu A*02 8 150
HLA A*0202 10 1056 HLA A*6801 9 1141 HLA B*5401 9 255  Mamu A*02 9 283
HLA A*0203 9 1443 HLA A*6801 10 1055 HLA B*5401 10 177 Mamu A*02 10 211
HLA A*0203 10 1055 HLA A*6802 9 1434 HLA B*5701 9 59  Mamu A*02 11 201
HLA A*0206 O 1437 HLA A*6802 10 1051 HLA B*5801 9 988  Mamu A*11 8 217
HLA A*0206 10 1054 HLA A*6901 9 833 H-2Db 9 303 Mamu A*11 9 468
HLA A*0301 9 2094 HLA B*0702 9 1262 H-2Db 10 134 Mamu A*11 10 277
HLA A*0301 10 1082 HLA B*0702 10 205 H-2Dd 9 85 Mamu A*11 11 214
HLA A*1101 9 1985 HLA B*0801 9 708 H-2Dd 10 75 Mamu B*01 8 155
HLA A*1101 10 1093 HLA B*1501 9 978 H-2Kb 8 480 Mamu B*01 9 205
HLA A*2301 9 104 HLA B*1801 9 118 H-2Kb 9 223 Mamu B*01 10 185
HLA A*2402 9 197 HLAB*2705 9 969 H-2Kd 9 176  Mamu B*01 11 208
HLA A*2402 10 78 HLA B*3501 9 736 H-2Kd 10 70 Mamu B*17 8 154
HLA A*2403 9 254 HLAB*3501 10 177  H-2 Kk 8 80 Mamu B*17 9 300
HLA A*2601 9 672 HLA B*4001 9 1078 H-2 Kk 9 164 Mamu B*17 10 198
HLA A*2902 9 160 HLA B*4002 9 118 H-2Kk 10 57  Mamu B*17 11 101
HLA A*2902 10 55 HLA B*4402 9 119 H-2Kk 11 51  Patr A*0901 11 89
HLA A*3001 9 669 HLA B*4403 9 119 H-2Ld 9 102 Patr B*0101 9 132

Peters, PLoS Comp Biol, 2006




Bicinformatics. 2015 Jul 1; 31{13): 2174=-2181. FPMCID: PMC4481849
FPublizhed online 2015 Feb 25. doi: 10.1093bininformaticebivi 23 PMID: 25717186

Automated benchmarking of peptide-MHC class | binding predictions

Thomas Trolle,! Imir &. Metushi,2 Jason A. Greenbaum,? Yohan Kim,2 John Sidm',z Ole Lund,! Alessandro Setie,?
Bioern Peters,2” and Morten Nielsen'3”

An automated benchmarking platform for MHC
class II binding prediction methods

Massimo Andreatta, Thomas Trolle, Zhen Yan, Jason A Greenbaum, Bjoern Peters,
Morten Nielsen &

Bioinformatics, Volume 34, Issue 9, 1 May 2018, Pages 1522-1528, https://doi.org/10.1093
/bioinformatics/btx820



IVIHC Dbinding atTinity as a predictor ot
iIimmunogenicity

~80% of epitopes
bind <500 nM,
supporting historic
threshold

Different alleles
have different
affinity distribution
- ranks / allele
specific thresholds
are preferred when
combining

Cumulative % of epitopes retrieved from the IEDB
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Paul, ] Immunol, 2013



Benchmarking MHC binding to predict MHC
binding vs T cell immunogenicity

* Predictive tools trained on MHC binding predict binding generally well
 Benchmarking MHC binding as a predictor of T cell immunogenicity

— Typically all T cell epitopes are binders, but only 5- 10 % of binders are
immunogenic

All Expressed Binding Immunogenic Processed Recognized

58% 2.5% 56% 15% 11%

Quantitative impact of variables influencing immunodominance. Assarsson et al. J Immunol 2007;178:7890-7901



Benchmarking elution data to predict
eluted peptides and T cell immunogenicity

* Elution data are increasingly used to train algorithms, that predict elution data very

well
— Combination with tools trained on binding data affords additional gains (later part of the talk)

 However, benchmarking of elution data (real data, not predicted) to predict T cell
epitope is largely missing
* ltis likely that all “true” epitopes are naturally processed but

* How many of them are detected vs missed given the limits of sensitivity of
the assays?

* Likewise, how many of the eluted ligands are immunogenic?



Binding affinity and Presentation
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“This revealed a multiplicative relationship between expression and affinity, in which a 10-
fold increase in expression could approximately compensate for a 90% decrease in
binding potential”

Abelin et al, Immunity 46, 315-326 (2017) Slide courtesy of Josh Elias



Benchmarking eluted peptides and
immunogenicity in the Bet v 1 system

Positive T cell epitopes Positive NP peptides
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J Allergy Clin Immunol. 2010 Mar;125(33:711-8, T18.e1-T18.e2. doi: 101016/ jaci.2009.10.052. Epub 2010 Feb 4.

Naturally processed T cell-activating peptides of the major birch pollen allergen.
Mutschlechner S, Enger M, Briza P, Wallner M, Lackner P, Karle A, Voat AB, Fischer GF, Bohle B, Ferreira F,




Further consideration relating to binding
affinity and abundance of eluted ligands

* High abundance can compensate for low MHC
affinity
— but how effective will such ligand be in terms of
immunogenicity???
* Conversely, a low abundance ligand that binds
with high affinity may be
— less easily detected
— more strongly immunogenic



Further benchmarking studies

a recent study in collaboration with Josh Elias, reported elution data
from the DENV infected Raji cell line

the in vitro elution data identified only 10/58 previously described
DENV T-cell epitopes, restricted by the Raji expressed HLAs

the study identified 5 low binding epitopes, and at least two of
these novel MHC ligands were recognized by T-cells from DENV-
infected patients

while HLA binding over predicts (few binders are actually epitopes);
elution data may under predict (it identifies only the tip of the
iceberg)

A further issue. Raji is a B cell line, which is not a major cell type
infected by DENV in vivo

Swaminathan et al. Submitted



Benchmarking elution data to predict
immunogenicity

* How representative is in vitro culture with cell lines of in vivo

processing in tissues?

Sci Data. 2018; 5: 180157. PMCID: PMCE080482
Published online 2018 Aug 7. doi: 10.1038/sdata.2018.157 PMID: 30084848

Data Descriptor

A tissue-based draft map of the murine MHC class | immunopeptidome

Heiko Schuster,1-23" Wenquang Shao,*" Tobias Weiss,” Patrick G.A. Pedrioli,* Patrick Roth,® Michael Weller,?
David S. Campbell, € Eric W. Deutsch,% Robert L. Moritz,® Oliver Planz,’ Hans-Georg Rammensee, 13
Ruedi Aebersold, %7 and Etienne Caron?#

* |n this study, over 3,000 ligands were identified from 18 different
tissues, and over 50% of the eluted ligands were found only in 2or

3 tissue
* This underlines the remarkable tissue specificity of protein

expression and pathogen tropism



Conclusions (Il)

MHC binding predictions predict MHC binding effectively

— Ongoing Automated benchmarking on going for both class | and
class I

MHC binding predictions have been benchmarked for
predicting T cell immunogenicity

— More in the next section
Availability of large elution datasets continue to increases

— These data are being utilized to derive algorithms predicting
elution data

Benchmarking studies will start to allow benchmarking
elution data in terms of prediction of T cell epitopes



Outline

 The IEDB and naturally processed (eluted
ligand) data (and associated data standards)

* The need for global benchmarking (binding,
eluted ligands, T cell recognition)

* A cancer epitope prediction pipeline and
benefitting from training with elution data



A cancer epitope prediction pipeline

MHC E
SO

= Cancers genomes accumulate mutations {T%

" Mutations in coding regions are translated = !
mutated protein sequences RS

ININTS
= Mutated peptides can be presented as epitopes
on MHC to T cells

" How well do tools perform in predicting
immunogenic heoepitopes?

Neoepitopes are recognized by
tumor-infiltrating lymphocytes (TILs) L ol e

Tumour cell

Nucleus

Putative

neoantigen

Coulie et al, Nat Rev Cancer. 2014 Feb;14(2):135-46
Schumacher & Schreiber, Science. 2015 Apr 3;348(6230):69-74



Datasets utilized in the study

* Training set of 78 neoepitopes curated from literature
 demonstrated T cell response (e.g. ELISPOT)
* neoantigen specific T cell recognizes cancer cell
* Negative control control data set generated from the same antigens
* Validation dataset provided by collaborators at NCI

total number of

Epitope Set analyzed peptides
Neoepitopes 49
round 1
Neoepitopes 29
round 2

52 positives
el (2o 2,760 negatives

Oncoimmunology, in press



Previously established 500nM threshold
identifies >90% of neoepitopes

Percent of epitopes
Percent of epitopes

000000000000

NetMHCpan 2.8 for HLA
binding prediction



Neoepitopes are predicted binders
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MHC Binding Predictions alone yields
best performance
Tested tools:

= binding prediction Ny 1% o

NetMHCpan - percentile rank

" proteasomal cleavage .
prediction e

TAP transport score 0.584

= TAP tra NSpPO rt pred iction AP s s e &

Combined processing & binding

" peptide-MHC stability S o

NetMHCstabpan rank

prediction L

binding

" similarity assessment
Similarity score 0.545

( B LO S U IVI 6 2 ) mmmmmm genicity score 0.562
Immunogenicity Threshold 0.953

= yvarious combinations




Does prediction of antigen processing
matter? Not really...
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Size adjustment of predicted
percentile ranks

Different MHC alleles have
different length preferences T T T T e ko

100 ks casswiad b Rraie e R A e e =8 HLA-A"02:01 ()

£ - 3 : : =t HLA-A*24:02 (F)
=0 HLA-B*07:02 (F)
o=0 HLA-B*51:01 ()

Are these differences also seen

in the length distribution of o R . - S NG R 3
] MHC binding length ¢

naturally processed peptides? preference Y Y ]

Analysis of peptides eluted from

dlffers from ! J T ! I l =9 HLA-A"01:01

. o=e HLA-B'07:02

secreted MHCs o e R

Predominant presentation of  Length distribution of

naturally processed

9mers for all analyzed MHCs peptides

Allele-specific length
preferences for eluted ligands e, s immunol, 2016
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True Positive Rate

Length adjustment of prediction
further boosts performance

100% S —
—

90%

80%

70%

80% Method AUC
. NetMHCpan - IC50 0.920
40% NetMHCpan - percentile rank 0.931
0% NetMHCpan - length-rescaled rank 0.952
20%

10%

0%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

False Positive Rate

=——netMHCpan IC50 =——netMHCpan percentile rank length-rescaled rank



netMHCpan Predicted IC50 vs
percentile rank

* Some alleles intrinsically bind more

peptides than others
* Different alleles have different affinity
thresholds

* Percentile ranks normalize predictions

across different alleles

* Generated by comparing its score against the
scores of 200,000 random natural peptides of
the same length of the query peptide o

* Prediction based on percentile ranks e e

outperforms C5 P
Method AUC

NetMHCpan - IC50 0.920

True Positive Rate

NetMHCpan - percentile rank 0.931




Findings consistent with previous studies from
Nielsen’s group N
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Andreatta M, Nielsen M, Bioinformatics (2016)
Nielsen M, Andreatta, M, Genome Medicine, (2016)



Binding affinity of most neoepitopes
is comparable to wildtype peptides
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NetMHCpan version 4 outperforms all
tools

* NetMHCpan4 was trained on
naturally eluted ligands as
well as on binding affinity
data.

. . . s
* Likelihood of a peptide
2
becoming a natural ligand (EL) :
-3
=3
L] L] L] L] ] p:
* Predicted binding affinity
non-binders
(percentile rank
Method All peptides >=10) removed
NetMHCpan - IC50 0.762 0.755
NetMHCpan - percentile rank 0.760 0.754
NetMHCpan - length-rescaled rank 0.783 0.777 NCI d ata
Combined relaxed filters 0.786 0.782
NetMHCpan-4 BA percen tile rank 0.798 0.792
NetMHCpan-4 EL percentile rank 0.807 0.802




How to learn from elution data?

Peptide + MHC sequence

Binding affinity

185,985 data points
covering 153 MHC-|
molecules

Input layer

Hidden layer

Output layer

Ligand

84,717 data points
covering 55 HLA-I
molecules

V. Jurtz et al. J Immunol. 2017

Nielsen’s group expanded
the NNalign approach by
adding a second output
neuron

Training is performed on
both data simultaneously
Resulting model is able to
predict binding affinity value
and likelihood of peptide
being an eluted ligand
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Conclusions (lll)

Peptide binding can be accurately predicted using state-
of-the-art prediction methods

All CD8+ (neo)epitopes are high affinity binders to MHC

Processing has limited impact on the prediction of CD8 T
cell epitopes

Integration of eluted ligand data into the prediction
pipeline improves prediction accuracy for both MHC class
ligands and T cell epitopes



Outline

The IEDB and naturally processed (eluted
ligand) data (and associated data standards)

The need for global benchmarking (binding,
eluted ligands, T cell recognition)

A cancer epitope prediction pipeline and
benefitting from training with elution data

Prediction of HLA class Il epitopes



Predicting MHC |
class Il ligands and
T helper epitopes

MHC class |

=
o

Fraction

=
=
[

Performance remains relatively low 92
(PCC=0.6-0.7) and many FP’s when
predicting T helper epitopes (MHC T = T ™
class Il ligands) Forank

We have large data sets (>1000 0.25 Less than 50% of ligands are found
measurements) available for most within top 10% !
prevalent class || molecules

And the picture does not change
(much) with more data

Same situation for other state-of-
the-art methods (including
measured binding affinity)

T




Key points for strategies using HLA class i

binding to predict TCR recognition

 HLA binding is necessary but not sufficient for TCR
recognition

 HLA binding predictions predict binding but not
necessarily TCR recognition

 HLA binding predictions are allele specific

 However, most applications require predictions at the
level of
— individual subjects ->8 alleles

— responding/treated population ->hundreds of alleles
(usually not typed)

 What is required is an actionable strategies to target
not alleles, but individuals and populations



Which HLA alleles should be considered?

Class | Alioles ®Class It Alioles

IMGT/HLA database
12.672 HLA alleles

A mean of 450 new
alleles/ Year
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A much more limited panel of HLA class Il
alleles allows for global coverage

Locus Molecule Phenotype Locus Molecule Phenotype
frequency frequency
DRB1 DRB1*0101 5.4 DQA1/DQB1 DQA1*0501/DQB1*0201 11.3
DRB1*0301 13.7 DQA1*0501/DQB1*0301 35.1
DRB1*0401 4.6 DQA1*0301/DQB1*0302 19.0
DRB1*0405 6.2 DQA1*0401/DQB1*0402 12.8
DRB1*0701 13.5 DQA1*0101/DQB1*0501 14.6
DRB1*0802 4.9 DQA1*0102/DQB1*0602 14.6
DRB1*0901 6.2 Combined 81.6
DRB1*1101 11.8 DPA1/DPB1 DPA1*0201/DPB1*0101 16.0
DRB1*1201 3.9 DPA1*0103/DPB1*0201 17.5
DRB1*1302 7.7 DPA1*01/DPB1*0401 36.2
DRB1*1501 12.2 DPA1*0301/DPB1*0402 41.6
Combined 71.1 DPA1*0201/DPB1*0501 21.7
DRB3/4/5 DRB3*0101 26.1 DPB1*1401@ 7.4
DRB3*0202 34.3 Combined 94.5
DRB4*0101 41.8
DRB5*0101 16.0 @ No algorithm available for DPB1*1401
Combined 87.7

* Additional important considerations
* Extensive overlap between repertoire of different allelic variants

* Dominant epitopes tend to be “promiscuous” .



Is predicting binding to a lot of HLAs
necessarily best? A heuristic approach

* Peptide datasets spanning entire proteins
associated with measured immune responses
in exposed humans

No. of Total No. of
Dataset Reference
Antigens | peptides | donors

Der p/f (House dust mite) Hinz,2015
Phl p (Timothy grass) 10 425 25 Oseroff, 2010
TB-1 4 71 18 Arlehamn, 2012
TB-2 11 499 32 Arlehamn,2015
Cockroach 6 463 19 Oseroff, 2012
Pertussis 9 785 23 Dillon, 2015
TOTAL 44 2399 137
Paul S et al. Development and validation of a broad scheme for prediction of HLA class 42

Il restricted T cell epitopes. J Immunol Methods. 2015 PubMed PMID: 25862607



Prediction of HLA class Il restricted T cell
epitopes at the population level

* Optimal results obtained with a set of seven
“prototypic” alleles

* These alleles are representatives of a variety of
binding modes and supertypes

Paul S et al. J Immunol Methods. 2015 PubMed PMID: 25862607
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MHC Il Epitope prediction algorithms are based on binding

affinity measurements from allele-specific binding assays.
* They work well for MHC binding predictions

But MHC Il “epitope prediction” performance is relatively low.

Limitations (compared to class |):
— MHC molecule structure

— Longer peptides

— Binding core & flanking residues

— Availability of data

— Other factors - antigen processing?
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Analyses to filter and generate high
quality data

Filtering step No. of ligand entries
Initial data 35,367
L 4
Ligands with lengths that are 20.5% of total data 34,737

(lengths 9-23)

A 4

Ligands with alleles listed unambiguously and 28,007
having 250 entries per allele (17 alleles)
Ligands with “optimal lengths” (lengths 13-23) 24,099 * *Based on prObabi“ty
l analysis using predicted
Ligands with proteins listed unambiguously and 18,286 * binders among Iigands
excluding “potential false antigens” vs. random peptides
v generated from ligands
Selecting unique peptides & that present in 100% 14,051

identity in “parent sequences”




Cleavage motif

Enrichment and depletion of amino acids within and adjacent to MHC
ligands and predicted binders

Heatmap — log transformed relative AA frequency with respect to the
overall amino acid frequency of the source proteins
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Combination of cleavage and binding
predictions improved ligand predictions

Training ligand data
o AUC
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Combination of cleavage and binding
does not improve epitope predictions

Training lig

zand data

a AUC

0 0.591
0.1 0.635
0.2 0.675
0.3 0.710
0.4 0.738
0.5 0.759
0.6 0.774
0.7 0.779
0.8 0.778
0.9 0.774

1 0.768

Evaluation ligand data
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e Used 3 different sets
of epitopes

Epitopes identified
from in-house
experiments

Epitopes identified by
tetramer mapping
studies (collected from
IEDB)

Epitopes from five
other studies curated
by IEDB that contained
15-mer peptides
spanning six proteins



Predicting HLA class Il T cell epitopes

* Like in the case of class |, processing/cleavage
predictions do not improve epitope
predictions

* For this reason we considered an agnhostic
approach, were we used T cell epitope data to
directly train predictive algorithms

e Used in-house data and IEDB-derived tetramer
as training set



In house training dataset
__-—-_

Overlapping (Arlehamn et al., 2012)
Mycobacterium Predicted 28 (Lindestam Arlehamn et al., 2013) 1043
tuberculosis Overlapping 61 (Lindestam Arlehamn et al., 2016) ®° 362
Confirmed epitopes 61 (Lindestam Arlehamn et al., 2016) 137
Overlapping 25 (Oseroff et al., 2010) 360
Predicted 35 (Schulten et al., 2013) 360
Timothy Grass 60
Overlapping 21 (Westernberg et al., 2016) 6
Overlapping 37 (Hinz et al., 2015) 0
House Dust Mite Overlapping 20 (Hinz et al., 2015) 52 6
Cockroach Overlapping 19 (Dillon et al., 2015) 71 521
Dengue Antigens Predicted 150 (Weiskopf et al., 2015a) 325 140
Erythropoietin Overlapping 5 (Tangri et al., 2005) 9 11
CRJ1 and CRJ2 Overlapping 54 (Oseroff et al., 2016) 30 18
Mouse allergens Predicted 22 (Schulten et al, submitted) 82 885
Novel house dust mite Predicted 20 (Oseroff et al., 2017) 105 186
Pertussis Vaccine Overlapping 53 (Bancroft et al., 2016) 100 202
Ragweed allergens Overlapping 25 (Pham et al., 2016) 15 183
Tetanus 20 (Antunes et al., 2017) 28 98
ZIKV polyprotein Overlapping 18 (Grifoni et al., unpublished) 48 529
Yellow fever virus Overlapping 42 (Weiskopf et al, unpublished) 42 639
Overall 1032 5739

51



Validation dataset

Reported in literature from other labs

Studies measuring T cell reactivity using complete sets of
overlapping peptides spanning antigens of interest and
exposed patient populations

After excluding antigens included in the in-house datasets, 57
papers were selected

Final set contained 530 dominant epitopes and 1758 non-
epitopes



Gain in performance by combining
binding and immunogenicity predictions
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Conclusions (1V)

HLA class Il predictions are less accurate than
class |

However, the extensive repertoire overlap and
t

ne phenomenon of epitope promiscuity are
also a prominent factor

As in the case of class |, processing predictions
do not improve epitope predictions

Population approaches and training with T cell
epitope data most promising approaches
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